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Preface

There is an incredible amount of current global research activity devoted to under-
standing the chemistry of life. The genomic revolution means that we now have
the basic genetic information in order to understand in full the molecular basis of
the life process. However, we are still in the early stages of trying to understand the
specific mechanisms and pathways that regulate cellular activities. Occasionally
discoveries are made that radically change the way in which we view cellular activ-
ities. One of the best examples would be the finding that reversible phosphoryla-
tion of proteins is a key regulatory mechanism with a plethora of downstream con-
sequences. Now the seminal discovery of another post-translational modification,
protein ubiquitylation, is leading to a radical revision of our understanding of cell
physiology. It is becoming ever more clear that protein ubiquitylation is as impor-
tant as protein phosphorylation in regulating cellular activities. One consequence
of protein ubiquitylation is protein degradation by the 26S proteasome. However,
we are just beginning to understand the full physiological consequences of cova-
lent modification of proteins, not only by ubiquitin, but also by ubiquitin-related
proteins.

Because the Ubiquitin Proteasome System (UPS) is a relatively young field of
study, there is ample room to speculate on possible future developments. Today a
handful of diseases, particularly neurodegenerative ones, are known to be caused
by malfunction of the UPS. With perhaps as many as 1000 human genes encoding
components of ubiquitin and ubiquitin-related modification pathways, it is almost
certain that many more diseases will be found to arise from genetic errors in the
UPS or by pathogen subversion of the system. This opens several avenues for the
development of new therapies. Already the proteasome inhibitor Velcade is produc-
ing clinical success in the fight against multiple myeloma. Other therapies based
on the inhibition or activation of specific ubiquitin ligases, the substrate recogni-
tion components of the UPS, are likely to be forthcoming. At the fundamental re-
search level there are a number of possible discoveries especially given the surpris-
ing range of biochemical reactions involving ubiquitin and its cousins. Who would
have guessed that the small highly conserved protein would be involved in endocy-
tosis or that its relative Atg8 would form covalent bonds to a phospholipid during
autophagy? We suspect that few students of ubiquitin will be surprised if it or a
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Preface

ubiquitin-like protein is one day found to be covalently attached to a nucleic acid
for some biological purpose.

We are regularly informed by the ubiquitin community that the initiation of this
series of books on the UPS is extremely timely. Even though the field is young, it
has now reached the point at which the biomedical scientific community at large
needs reference works in which contributing authors indicate the fundamental
roles of the ubiquitin proteasome system in all cellular processes. We have at-
tempted to draw together contributions from experts in the field to illustrate the
comprehensive manner in which the ubiquitin proteasome system regulates cell
physiology. There is no doubt then when the full implications of protein modifica-
tion by ubiquitin and ubiquitin-like molecules are fully understood we will have
gained fundamental new insights into the life process. We will also have come to
understand those pathological processes resulting from UPS malfunction. The
medical implications should have considerable impact on the pharmaceutical in-
dustry and should open new avenues for therapeutic intervention in human and
animal diseases. The extensive physiological ramifications of the ubiquitin protea-
some system warrant a series of books of which this is the first one.

Aaron Ciechanover
Marty Rechsteiner
John Mayer
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1
Molecular Chaperones and the Ubiquitin—
Proteasome System

Cam Patterson and Jorg Hohfeld

Abstract

A role for the ubiquitin—proteasome system in the removal of misfolded and ab-
normal proteins is well established. Nevertheless, very little is known about how
abnormal proteins are recognized for degradation by the proteasome. Recent ad-
vances suggest that substrate recognition and processing require a close coopera-
tion of the ubiquitin—proteasome system with molecular chaperones. Chaperones
are defined by their ability to recognize nonnative conformations of other proteins
and are therefore ideally suited to distinguish between native and abnormal pro-
teins during substrate selection. Here we discuss molecular mechanisms that
underlie the cooperation of molecular chaperones with the ubiquitin—proteasome
system. Advancing our knowledge about such mechanisms may open up opportu-
nities to modulate chaperone—proteasome cooperation in human diseases.

g o |
Introduction

The biological activity of a protein is defined by its unique three-dimensional struc-
ture. Attaining this structure, however, is a delicate process. A recent study sug-
gests that up to 30% of all newly synthesized proteins never reach their native state
[1]. As protein misfolding poses a major threat to cell function and viability, mo-
lecular mechanisms must have evolved to prevent the accumulation of misfolded
proteins and thus aggregate formation. Two protective strategies appear to be fol-
lowed. Molecular chaperones are employed to stabilize nonnative protein confor-
mations and to promote folding to the native state whenever possible. Alterna-
tively, misfolded proteins are removed by degradation, involving, for example, the
ubiquitin—proteasome system. For a long time molecular chaperones and cellular
degradation systems were therefore viewed as opposing forces. However, recent
evidence suggests that certain chaperones (in particular members of the 70- and
90-kDa heat shock protein families) are able to cooperate with the ubiquitin—
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1 Molecular Chaperones and the Ubiquitin—Proteasome System

proteasome system. Protein fate thus appears to be determined by a tight interplay
of cellular protein-folding and protein-degradation systems.

1.2
A Biomedical Perspective

The aggregation and accumulation of misfolded proteins is now recognized as
a common characteristic of a number of degenerative disorders, many of which
have neurological manifestations [2, 3]. These diseases include prionopathies, Alz-
heimer’s and Parkinson’s diseases, and polyglutamine expansion diseases such as
Huntington’s disease and spinocerebellar ataxia. At the cellular level, these dis-
eases are characterized by the accumulation of aberrant proteins either intracellu-
larly or extracellularly in specific groups of cells that subsequently undergo death.
The precise association between protein accumulation and cell death remains in-
completely understood and may vary from disease to disease. In some cases, mis-
folded protein accumulations may themselves be toxic or exert spatial constraints
on cells that affect their ability to function normally. In other cases, the sequester-
ing of proteins in aggregates may itself be a protective mechanism, and it is the
overwhelming of pathways that consolidate aberrant proteins that is the toxic
event. In either case, lessons learned from genetically determined neurodegenera-
tive diseases have helped us to understand the inciting events of protein aggrega-
tion that ultimately lead to degenerative diseases.

Mutations resulting in neurodegenerative diseases fall into two broad classes.
The first class comprises mutations that affect proteins, irrespective of their native
function, and cause them to misfold. The classic example of this is Huntington’s
disease [4, 5]. The protein encoded by the huntingtin gene contains a stretch of
glutamine residues (or polyglutamine repeat), and the genomic DNA sequence
that codes for this polyglutamine repeat is subject to misreading and expansion.
When the length of the polyglutamine repeat in huntingtin reaches a critical
threshold of approximately 35 residues, the protein becomes prone to misfolding
and aggregation [6]. This appears to be the proximate cause of neurotoxicity in
this invariably fatal disease [7, 8]. A number of other neurodegenerative diseases
are caused by polyglutamine expansions [9, 10|. For example, spinocerebellar
ataxia is caused by polyglutamine expansions in the protein ataxin-1 [11]. In other
diseases, protein misfolding occurs due to other mutations that induce misfolding
and aggregation; for example, mutations in superoxide dismutase-1 lead to aggre-
gation and neurotoxicity in amyotrophic lateral sclerosis [12, 13].

Other mutations that result in neurodegenerative diseases are instructive in that
they directly implicate the ubiquitin—proteasome system in the pathogenesis of
these diseases [14|. For example, mutations in the gene encoding the protein par-
kin are associated with juvenile-onset Parkinson’s disease [15, 16]. Parkin is a
RING finger—containing ubiquitin ligase, and mutations in this ubiquitin ligase
cause accumulation of target proteins that ultimately result in the neurotoxicity
and motor dysfunction associated with Parkinson’s disease [17-20].



1.3 Molecular Chaperones: Mode of Action and Cellular Functions

Repressor screens of neurodegeneration phenotypes in animal models have also
linked the molecular chaperone machinery to neurodegeneration [21-24]. Taken
together, the pathophysiology of neurodegenerative diseases provides a compelling
demonstration of the importance of the regulated metabolism of misfolded pro-
teins and provides direct evidence of the role of both molecular chaperones and
the ubiquitin—proteasome system in guarding against protein misfolding and its
consequent toxicity.

1.3
Molecular Chaperones: Mode of Action and Cellular Functions

Molecular chaperones are defined by their ability to bind and stabilize nonnative
conformations of other proteins [25, 26|. Although they are an amazingly diverse
group of conserved and ubiquitous proteins, they are also among the most abun-
dant intracellular proteins. The classical function of chaperones is to facilitate
protein folding, inhibit misfolding, and prevent aggregation. These folding events
are regulated Dby interactions between chaperones and ancillary proteins, the co-
chaperones, which in general assist in cycling unfolded substrate proteins on and
off the active chaperone complex [25, 27, 28]. In agreement with their essential
function under normal growth conditions, chaperones are ubiquitously expressed
and are found in all cellular compartments of the eukaryotic cell (except for perox-
isomes). In addition, cells greatly increase chaperone concentration as a response
to diverse stresses, when proteins become unfolded and require protection and sta-
bilization [29]. Accordingly, many chaperones are heat shock proteins (Hsps). Four
main families of cytoplasmic chaperones can be distinguished: the Hsp70 family,
the Hsp90 family, the small heat shock proteins, and the chaperonins.

1.3.1
The Hsp70 Family

The Hsp70 proteins bind to misfolded proteins promiscuously during translation
or after stress-mediated protein damage [26, 30]. Members of this family are highly
conserved throughout evolution and are found throughout the prokaryotic and eu-
karyotic phylogeny. It is common for a single cell to contain multiple homologues,
even within a single cellular compartment; for example, mammalian cells express
two inducible homologues (Hsp70.1 and Hsp70.3) and a constitutive homologue
(Hsc70) in the cytoplasm. These homologues have overlapping but not totally re-
dundant cellular functions. Members of this family are typically in the range of 70
kDa in size and contain three functional domains: an amino-terminal ATPase do-
main, a central peptide-binding cleft, and a carboxyl terminus that seems to form a
lid over the peptide-binding cleft [28] (Figure 1.1). The chaperones recognize short
segments of the protein substrate, which are composed of clusters of hydrophobic
amino acids flanked by basic residues [31]. Such binding motifs occur frequently
within protein sequences and are found exposed on nonnative proteins. In fact,

3
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Hsp40 proteins CHIP
N/

chaperone )
substrate ATP hydrolysis

Hsp70
nucleotide exchange
72 N
BAG proteins Hip
HspBP1
Fig. 1.1. Schematic presentation of the conformation, the binding pocket is open,
domain architecture and chaperone cycle of resulting in a low affinity for the binding of a
Hsp70. Hsp70 proteins display a characteristic chaperone substrate. ATP hydrolysis induces
domain structure comprising an amino- stable substrate binding through a closure of
terminal ATPase domain (ATP), a peptide- the peptide-binding pocket. Substrate release
binding domain (P), and a carboxyl-terminal is induced upon nucleotide exchange. ATP

domain (C) that is supposed to form a lid over hydrolysis and nucleotide exchange are
the peptide-binding domain. In the ATP-bound regulated by diverse co-chaperones.

mammalian Hsp70 binds to a wide range of nascent and newly synthesized pro-
teins, comprising about 15-20% of total protein [32]. This percentage is most
likely further increased under stress conditions. Hsp70 proteins apparently prevent
protein aggregation and promote proper folding by shielding hydrophobic seg-
ments of the protein substrate. The hydrophobic segments are recognized by the
central peptide-binding domain of Hsp70 proteins (Figure 1.1). The domain is
composed of two sheets of § strands that together with connecting loops form a
cleft to accommodate extended peptides of about seven amino acids in length, as
revealed in crystallographic studies of bacterial Hsp70 [33]. In the obtained crystal
structure, the adjacent carboxyl-terminal domain of Hsp70 folds back over the f
sandwich, suggesting that the domain may function as a lid in permitting entry
and release of protein substrates (Figure 1.1). According to this model, ATP bind-
ing and hydrolysis by the amino-terminal ATPase domain of Hsp70 induce confor-
mational changes of the carboxyl terminus, which lead to lid opening and closure
[28]. In the ATP-bound conformation of Hsp70, the peptide-binding pocket is
open, resulting in rapid binding and release of the substrate and consequently in
a low binding affinity (Figure 1.1). Stable holding of the protein substrate requires
closing of the binding pocket, which is induced upon ATP hydrolysis and conver-
sion of Hsp70 to the ADP-bound conformation. The dynamic association of Hsp70
with nonnative polypeptide substrates thus depends on ongoing cycles of ATP
binding, hydrolysis, and nucleotide exchange. Importantly, ancillary co-chaperones
are employed to regulate the ATPase cycle [27, 30]. Co-chaperones of the Hsp40
family (also termed | proteins due to their founding member bacterial DnaJ) stim-
ulate the ATP hydrolysis step within the Hsp70 reaction cycle and in this way pro-
mote substrate binding [34] (Figure 1.1). In contrast, the carboxyl terminus of
Hsp70-interacting protein CHIP attenuates ATP hydrolysis [35]. Similarly, nucleo-



