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Preface to Part II/A

A theory is the more impressive,

the simpler are its premises,

the more distinct are the things it connects,

and the broader is its range of applicability.
Albert Einstein

This is the second of a five-volume exposition of the main principles of
nonlinear functional analysis and its numerous applications to the natural
sciences and mathematical economics. The presentation is self-contained and
accessible to a broader audience of mathematicians, natural scientists, and
engineers. The basic content can be understood even by those readers who
have little or no knowledge of linear functional analysis. The material of the
five volumes is organized as follows:

Part I: Fixed-point theorems.

Part II: Monotone operators.

Part III: Variational methods and optimization.
Parts IV/V: Applications to mathematical physics.

The main goals of the work are discussed in detail in the Preface of Part 1.
A Table of Contents of Parts I through V can be found on page 871 of
Part 1. The empbhasis of the treatment is based on the following considera-
tions:

(a) Which are the basic, guiding concepts, and what relationship exists be-
tween them?

(b) What is the relationship between these ideas and the known results of
classical analysis and of linear functional analysis?

(c) What are some typical applications?

vil



viii Preface to Part II/A

The present Part I1 is divided into two subvolumes:

Part [I/A: Linear monotone operators.
Part 11/B: Nonlinear monotone operators.

These two subvolumes form a unit. They consist of the following sections:

introduction to the subject;

linear monotone problems;

generalization to nonlinear stationary problems;
generalization to nonlinear nonstationary problems;
general theory of discretization methods.

The numerous applications concern differential equations and integral equa-
tions, as well as numerical methods to their solution.

The Appendix, the Bibliography, and the Index material to Parts II/A and
I1/B can be found at the end of Part I1/B.

The modern theory of linear partial differential equations of elliptic, para-
bolic, or hyperbolic type is based on the so-called Hilbert space methods. In
this connection, boundary value problems and initial value problems are
transformed into operator equations in Hilbert space. The solutions of these
operator equations correspond to generalized solutions of the original classical
problems. Here, the generalized solutions live in so-called Sobolev spaces.
Roughly speaking, Sobolev spaces consist of functions which have sufficiently
reasonable generalized derivatives.

The theory of monotone operators generalizes the Hilbert space methods to
nonlinear problems. We want to emphasize that the Hilbert space methods
and the theory of monotone operators are connected with the main streams
of mathematics. They are closely related to Hilbert’s rigorous justification of
the Dirichlet principle, and to the 19th and 20th problems of Hilbert which he
formulated in his famous Paris lecture in 1900. The relevant historical back-
ground will be discussed in Chapter 18. From the physical point of view, the
Hilbert space methods and the more general theory of monotone operators
are based on the fundamental concept of energy. Roughly speaking, Sobolev
spaces can be regarded as spaces of functions which correspond to physical
states of finite energy. We will show that, in our century, the notion of
monotone operators played, both implicitly and explicitly, a fundamental role
in the development of the calculus of variations, in the theory of linear and
nonlinear partial differential equations, and in numerical analysis.

In order to help the reader understand the basic ideas, the first chapters of
this volume serve as an elementary introduction to the modern functional
analytic theory of linear partial differential equations. In particular, Chapter
18 contains an elegant functional analytic justification of the Dirichlet prin-
ciple, based on a generalization of the classical Pythagorean theorem to
Hilbert spaces. An introduction to the theory of Sobolev spaces can be found
in Chapter 21. Experience shows that students frequently have trouble with
the technicalities of Sobolev spaces. In Chapter 21, for the benefit of the reader,
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we choose an approach to Sobolev spaces which is as elementary as possible.
To this end, we first prove all the embedding theorems in an extremely simple
manner in R*, before passing to R™. For the convenience of the reader, the
basic properties of the Lebesgue integral are summarized in the Appendix
to Part II/B. In this connection, we choose the simplest definition of the
Lebesgue integral. In contrast to other definitions of the Lebesgue integral,
our definition also applies immediately to functions with values in B-spaces.
Such functions are needed in connection with evolution equations. Moreover,
in Chapter 18 we discuss a number of important principles which are frequently
used in modern analysis, for example, the smoothing principle via mollifiers,
the localization principle via partition of unity, the extension principle, and
the completion principle.

The basic ideas and basic principles of the theory of nonlinear monotone
operators are discussed in detail in a special section at the beginning of Part
[1/B. Any reader who wishes to learn about nonlinear monotone operators as
quickly as possible may immediately begin reading Part II/B.

A reference of the form A ;(20) and A, (20) is to formula (20) in the Appendix
of Part I and 11/B, respectively; while (18.20) refers to formula (20) in Chapter
18. Omission of a chapter number means that the formula is in the current
chapter. The References to the Literature at the end of each chapter are of the
following form: Krasnoselskii (1956, M, B, H), etc. The name and the year
relate to the Bibliography at the end of Part 1I/B. The letters stand for the
following:

M: monograph;

. lecture notes;

survey article;

proceedings;

extensive bibliography in the work cited;

comments on the historical development of the subject contained in the
work cited.

o
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A List of Symbols may be found at the end of Part II/B. We have tried
to use generally accepted symbols. A few peculiarities, introduced to avoid
confusion, are described in the remarks introducing the List of Symbols.

Basic material on linear functional analysis may be found in the Appendix
to Part I.

The theory of monotone operators is related to the simple fact that the
derivative f’ of a convex real function f is a monotone function. However, it is
quite remarkable that the idea of the monotone operator allows many diver-
sified applications. For example, there are applications to the following topics:

(1) variational problems and variational inequalities;
(i) nonlinear elliptic, parabolic, and hyperbolic partial differential
equations;
(iii) nonlinear integral equations;
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(iv) nonlinear semigroups;
(v) nonlinear eigenvalue problems;
(vi) nonlinear Fredholm alternatives;

(vii) mapping degree for noncompact operators;

(viii) numerical methods such as the Ritz method (e.g., the method of finite
clements), the Galerkin method, the projection-iteration method, the
difference method, and the Kaéanov method for conservation laws and
variational inequalities.

Concerning time-dependent problems we emphasize both the Galerkin
method and the method of semigroups. We also discuss in detail the fact that
the theory of monotone operators generalizes both the theory of bounded and
unbounded linear operators. To this end we develop, in Chapters 18 and 22
through 24, the theory of linear partial differential equations based on bounded

~_§near operators, and in Chapter 19, we study in detail the elegant method of
the Friedrichs extension for unbounded linear operators and its applications
to variational problems and to linear and semilinear elliptic, parabolic, and
hyperbolic equations, as well as applications to the semilinear Schrédinger
equation. As we shall show in Parts IV and V, unbounded linear operators
play a decisive role in quantum mechanics and quantum field theory (elemen-
tary particle physics). In contrast to this, for example, bounded linear operators
are related to elasticity and hydrodynamics.

At the center of the theory of monotone operators there stands the notion
of the maximal monotone operator, which generalizes both the theory of
bounded and unbounded linear monotone operators. The theory of maximal
monotone operators will be studied in detail in Chapter 32.

A number of diagrams contained in the text should help the reader to
discover interrelationships between different topics. In particular, we recom-
mend Figure 27.1 in Section 27.5 of Part II/B where the reader may find
interrelationships between many important operator properties in nonlinear
functional analysis. A list of all these schematic overviews can be found at the
end of Part II/B. A list of the basic theorems and of the basic definitions can
also be found there.

In Part I we studied equations involving compact operators. The decisive
advantage of the theory of monotone operators is that it is also applicable to
noncompact operators. Along with abstract existence theorems we also stress
the methods of numerical functional analysis. Chapters 20 through 22 (resp.
Chapters 33 through 35) may serve as an introduction to linear (resp. non-
linear) numerical functional analysis. For example, in terms of numerical
functional analysis, monotone operators allow us to justify the following
fundamental principle: Consistency and stability imply convergence. In this
connection, the general notion of A-proper maps is crucial.

The connection between the theory of monotone operators and general
variational methods will be studied in detail in Part III. In Parts IV and V we
will consider applications of the theory of monotone operators to interesting
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problems in mathematical physics. For example, the theory of monotone
operators plays an important role in elasticity, hydrodynamics (the Navier—
Stokes equations), gas dynamics (subsonic flow), and semiconductor physics.

I hope that the reader will enjoy discovering a number of interesting
interrelationships in mathematics.

Leipzig Eberhard Zeidler
Spring 1989
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