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Preface

This volume of 23 survey articles is dedicated to Richard M. Schoen on the
occasion of his 60th birthday in recognition of his many important contributions as
a leading researcher in geometric analysis and general relativity. We also thank him
for the equally important roles he has played as mentor, colleague, collaborator,
and friend.

Rick Schoen was born on October 23, 1950 in Celina, Ohio. In 1972 he grad-
uated summa cum laude from the University of Dayton and received an NSF
Graduate Fellowship. In March 1977, Rick received his Ph.D. from Stanford Uni-
versity under the direction of Leon Simon and Shing-Tung Yau, and soon after
received a Sloan Postdoctoral Fellowship. His early work was on minimal surfaces
and harmonic maps. By the time that Rick received his Ph.D., he had already
proven major results, including his 1975 curvature estimates paper with Simon
and Yau.

In the late 1970’s, Schoen and Yau developed new tools to study the topological
implications of positive scalar curvature. This work grew out of their study of
stable minimal surfaces, eventually leading to their proof of the positive mass
theorem in 1979. All together, their work was impressive for the way it connected
neighboring fields, first using analysis to understand geometry, and then using
geometry to understand physics.

In the early 1980’s, Rick published a number of fundamental papers on minimal
surfaces and harmonic maps. His work on minimal surfaces includes an influential
Bernstein theorem for stable minimal surfaces with Doris Fischer-Colbrie. Rick
met his future wife Doris in Berkeley, where Doris received her Ph.D. in 1978.
They have two children, Alan and Lucy, seen in the photographs in this book,
both of whom graduated from Stanford.

Other works from the early 1980’s include an extremely useful curvature es-
timate for stable surfaces, a uniqueness theorem for the catenoid, and a partial
regularity theory for stable hypersurfaces in high dimensions with Leon Simon. In
1982, Rick and Karen Uhlenbeck proved the partial regularity of energy minimiz-
ing harmonic maps. In 1983, Rick was awarded the very prestigious MacArthur
Prize Fellowship.

Rick is also very well known for his celebrated solution to the remaining cases
of the Yamabe problem in 1984, this time using a theorem from physics, namely
the positive mass theorem, to solve a famous problem in geometry. The resulting
fundamental theorem in geometry, that every smooth Riemannian metric on a
closed manifold admits a conformal metric of constant scalar curvature, had been



i Preface

open since the 60’s. This work was cited in 1989 when Rick received the Bocher
prize of the American Mathematical Society. His work on scalar curvature at this
time set the direction for the field for the next 25 years.

Rick was elected to the American Academy of Arts and Sciences in 1988 and
the National Academy of Sciences in 1991. He has been a Fellow of the American
Association for the Advancement of Science since 1995 and won a Guggenheim
Fellowship in 1996.

Starting around 1990, Rick began two major programs. The first was to develop
a theory of harmonic maps with singular targets, starting with a joint paper with
Mikhail Gromov where they used harmonic maps to establish p-adic superrigidity
for lattices in groups of rank one. In a series of papers, Rick and Nick Korevaar laid
the foundations for a general theory of mappings to NPC spaces, established the
basic existence and regularity results, and applied their theory to settle problems
in a number of areas of mathematics. The second big program was a variational
theory of Lagrangian submanifolds, including the existence and regularity theory,
done in a series of papers with Jon Wolfson.

Over the last decade, Rick has continued to make major contributions to ge-
ometric analysis and general relativity. Among other results in general relativ-
ity, Rick has made fundamental contributions to the constraint equations (with
Corvino and others) which dictate the range of possible initial conditions for a
spacetime and proved theorems on the topology of higher dimensional black holes
(with Galloway). In geometric analysis, he has several important results with
Simon Brendle on Ricci flow, including the proof of the differentiable sphere the-
orem, as well as a compactness theorem for the Yamabe equation with Marcus
Khuri and Fernando Marques.

Rick has written 2 books and roughly 80 papers and has solved an impressively
wide variety of major problems and conjectures. He has supervised 35 students
and counting, and he has hosted many postdocs. Even with his great success, Rick
is still one of the hardest working people in mathematics, giving us all the distinct
impression that he must love it. His impact on mathematics, both in terms of his
ideas and the example he sets, continues to be tremendous.

We would like to thank all of the authors for their contributions, the publishers
Lizhen Ji and Liping Wang for their help, as well as Jaigyoung Choe, Michael Eich-
mair, John Rawnsley, Peter Topping, and Doris Fischer-Colbrie for contributing
photographs. We hope you enjoy reading the beautiful survey articles included in
this volume as much as we have enjoyed helping to put it all together.

Hubert L. Bray and William P. Minicozzi II
April 20, 2011
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On the Positive Mass, Penrose, and ZAS
Inequalities in General Dimension

Hubert L. Bray*

Abstract

After a detailed introduction including new examples, we give an exposition focus-
ing on the Riemannian cases of the positive mass, Penrose, and ZAS inequalities of
general relativity, in general dimension.

2000 Mathematics Subject Classification: 53C80, 53C24, 53C44.
Keywords and Phrases: General relativity, Scalar curvature, Black holes, Min-
imal surfaces, Zero area singularities, ZAS, Positive mass inequality, Penrose in-
equality, ZAS inequality.

1 Dedication

It is an honor and a pleasure to contribute a paper to this volume celebrating
Richard Schoen’s 60th birthday (which doesn’t seem possible since Rick is so much
better at every sport than the author). Rick’s contribution to mathematics contin-
ues to be tremendous and is growing at an impressive rate, including his original
research, collaborations with others, and the many students whom he has so ex-
pertly supervised. As successful as he has been for so many years, his continuing
hard work and dedication reveals his genuine passion and love for mathematics.
He is a role model for us all.

The ideas and directions discussed in this paper were in large part inspired
by the positive mass inequality, proved in dimensions less than eight in Rick’s
famous joint works with S.-T. Yau [37, 38, 36, 35]. The positive mass inequality
is a beautiful geometric statement about scalar curvature which can equivalently
be understood as the fundamental result in general relativity that positive energy
densities in a spacetime imply that the total mass of the spacetime is also positive.
In this paper we will discuss the Riemannian cases of the positive mass inequality,
the Penrose inequality, and the ZAS (zero area singularity) inequality, describing
how they are closely related in Section 3. We apologize in advance for not making
this a comprehensive survey of every interesting result in these areas, although
we do recommend [26] as a very nice survey of the Penrose inequality. But first,

*Mathematics Department, Duke University, Box 90320, Durham, NC 27708, USA. E-mail:
bray@ math.duke.edu. Supported in part by NSF grants DMS-0706794 and DMS-1007063.



2 Hubert L. Bray

in Section 2 we begin with a mixture of well-known facts and interesting new
examples to motivate our later discussion.

2 Introduction

In this section we describe some of the ideas, motivations, and definitions that are
central to general relativity, in general dimension. We also discuss intuition and
include some new examples due to Lam [21, 22] of manifolds where the Riemannian
positive mass inequality and the Riemannian Penrose inequality can be proved
directly.

Broadly defined, general relativity encompasses any description of the uni-
verse as a smooth manifold with a Lorentzian metric, called a spacetime, of sig-
nature (1,n), where usually n = 3. Then the Einstein equation

G=(n—1Dw,1T (1)

can be taken to be the definition of the stress energy tensor T', where w,,_; is the
measure of the unit (n — 1) sphere. Thus, in dimension three, G = 8xT. The
Einstein curvature tensor G = Ric — %R - g has zero divergence by the second
Bianchi identity. Furthermore, T'(v1,12) is defined to be the amount of energy
traveling in the unit direction v; as observed by someone going in the unit direction
vo. We comment that the Einstein equation can be derived from an action principle
based on the Einstein-Hilbert action in the vacuum case, but we will take the
Einstein equation as our starting point. The zero divergence property of G (which
is a consequence of the action principle) may be interpreted as a local conservation
property for the stress energy tensor T'.

2.1 The Schwarzschild Spacetimes

The vacuum case of general relativity is G = 0 which, for n > 2, implies that
Ric = 0. Unlike Newtonian physics which is trivial in the vacuum case, general
relativity is highly nontrivial in the vacuum case when n > 3. That is, there exist
many solutions to G = 0 other than the Minkowski spacetime metric

—dt ® dt + dz' ® dz' + -+ - + dz" ® dz™, (2)

which include solutions describing gravitational waves which propagate at the
speed of light. However, if we restrict our attention to spacetimes which are
static and spatially spherically symmetric, then it is an exercise to show that for
n > 3 there is precisely a one parameter family of vacuum solutions, called the
Schwarzschild spacetimes. Explicitly, these spacetimes are

2 4

1— k =7

| —5— | d®dt+ 1+ —— (dz' @ de* + -+ da™ ® dz™), (3)
1+ = -3

for r > |k|Y/("~2), where r = 1/(z1)Z + - -- + (z")2.



