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Preface

This book is based on my previous version in Chinese published 20 years ago.
It follows the same style as the original book, i.e., elasticity and plasticity are
combined in one textbook. To organize the materials in this way reflects the actual
process in the real world. It is a continuous process that when a solid body or
structure subjects to a graduélly increased loading, it may cause the deformation
from elastic state to plastic state, and then finally lose its designed functions. To
teach students those two theories together may help to compare those two
processes, for the understanding of the entire deformation process, and therefore
help students to build solid knowledge and systematic concepts about elasticity and
plasticity. It will also benefit the research of the theory as well as engineering
designs.

Comparing with the Chinese version of Theory of Elasticity and Plasticity, a
lot of changes have been made in this version. Almost every chapter has added new
contents. Theory of plates and shells has been removed due to a recent trend of
teaching this topic in a separate course. Meanwhile, dynamic problems have been
included as a new chapter. The major additions reflect the developments and
extensions of interest and practical applicability that have occurred since the
appearance of the Chinese version in 1979.

This book is still easy to read and understand. Several efforts have been made
to achieve this result by introducing the most recent reference articles, using less
complicated formulas and avoiding abstract concepts in mathematics. It should help
the students to overcome the difficulties while firstly entering this field, and it
should also help them to focus on the most important concepts rather than immerse
in complicated mathematics formulas.

I wish that this book would serve as a practical textbook for senior engineering
students or graduates studies. It should also be used as a convenient reference book

for engineers to solve the problems in their daily design work.



In the new period of development of science and technology, more and more
engineering students will face new challenges when they join work force in the next
few years. To adapt English textbooks will definitely help them more efficiently
reading and writing technical articles in English.

I wish to express my gratitude to Professor Xu Bingye and Professor Yang
Huizhu for their frequent help and valuable suggestions. I also acknowledge the
assistance of my students and colleagues of the Institute of Applied Mechanics of
Taiyuan University of Technology Dr. Chen Weiyi, Dr. Shu Xuefeng, Dr. Ma
Hongwei, Dr. Zhang Nianmei and Professor Cai Zhongmin, for their support and
help in completing this work.

W AEE
Yang Guitong
Jan. 27, 2002
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i

1 Introduction

1.1 Elasticity and Plasticity

Essential properties of deformable bodies subjected to external force or other
external action are elastic and plastic behaviors. As discussed in the discipline of
mechanics of materials, that is, if the external forces producing deformation do
not exceed a certain limit, that is so called yield criteria, the deformation
disappears with the removal of the forces, and then we consider this property as
elasticity. Otherwise, the deformation does not disappear after removal of the
forces, and then we consider the property as plasticity. Another main difference
between perfect elasticity and plasticity, in mathematical view, is a linear problem
and a nonlinear problem, respectively.

The atom forces in the material internal structure determine the mechanism of
these two kinds of deformations. In fact, the internal structure of solid materials is
always stable, on the basis of balance forces between atoms in a solid. The suction
force makes the atoms tend to close upon to each other, and the repulsion force
makes the atoms maintain some reasonable distance. In normal cases, these two
forces are in equilibrium state. Atomic structure will not be considered here. We
will be interested in the macroscopical response only. When a solid body is
subjected to external loading, there are two D
different responses: elastic response and
plastic response.

Elastic deformation is a simple case easy %|
to be understood. Plastic deformation is a

more complex case. Fig.1.1 shows the

typical curve for a simple tension specimen of

o

£

metal. The initial elastic region generally Bl 1.1 Shvese s s for

appears as a straight line OA, where A an annealed cast-steel specimen
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defines as the limit of proportionality. On further straining, the relation between
stress and strain is no longer linear but the material is still elastic, and with release
of the load, the specimen reverts to its original length. The maximum stress point
B at which the load can be applied without causing any permanent deformation
defines as the elastic limit. The point B is also called the yield point, for it marks
the initiation of plastic or irreversible deformation. Usually, there is very little
difference between the proportional limit, A, and the elastic limit, B. The
behavior in the flat region BC is generally referer to as plastic flow. After C the
material is exhibited strain hardening or also known as work hardening. Over some
point D the material may be exhibited strain softening, as shown in Fig.1.1.

Now, consider the unloading from some point E beyond the yield point. The
behavior is as indicated in Fig. 1.1. That is, when the stress is reduced, the strain
decreases along an almost elastic unloading line parallel to OA. So we say that the
unloading obeys the elastic rule.

Fig. 1.2 is the typical graph of stresses versus relative elongation

(compression) for four kinds of materials.

o(MPa) MP2)
a)
1500} ’
1200
Glass,
1200~ . compression
Points having _ p 900
90 |- Squal true strain Compression, g, vs. & L
600 — Tension and i 600 — . i
compression Gray cast iron,
% Vs:l'fl . compression
ension, o, vs. ¢
00 Fracture = 300 Gray cast iron, tension
| | | | % Glass, tension
0> So—20 30 40 350 % 0 ! 3 %)
(a) (b
o(MPa)
%- 93(MPa)
30— .
————— Insensitive
; clay Dense sand, undisturbed
/ sensitive clay
15— // .
Compression
Loose sand,
. remolded sensitive clay
Tension
| | | (%)
0 0.25 0.5 0.75 €
© )

Fig. 1.2 Stress-strain diagrams: (a)Ductile metal, (b)Cast iron and glass,
(¢) Typical concrete or rock, (d)Soils, triaxial compression.

(Experimental data are taken from reference[ 15].)



1.2 Basic Hypothesis

The subject of theory of elasticity and plasticity is concerned with the
deformation and motion of elastic-plastic bodies or structures under the action of
applied load or other disturbances. The general assumptions employed in the study
of theory of elasticity and plasticity are the same as those used in the mechanics of
continuous medium. Therefore, throughout this book, we have: (a) continuum
hypothesis, we shall suppose that the macroscopic behavior of the solid bodies is
the same as if they were perfectly continuous in structure; and physical quantities
such as the mass and momentum associated with the matter contained within a
given small volume will be regarded as being spread uniformly and without any
caves, cracks and discontinuous. (b) uniform hypothesis and isotropic hypothesis,
that are, the materials of a elastic-plastic body are homogeneous and uniformly
distributed over its volume so that the smallest element cut from the body possesses
the same specific physical properties as the body. The elastic properties are the
same in all directions. (c) small deformation hypothesis, in this book, we discuss

small deformation only.

1.3 Historical Remarks

Before the engineering design of structures, one must not only know the
internal force field acting on the structural materials, but also know the material
response. It means that we need give an analysis of the stresses, deformation and
displacement of structural elements. Therefore we have to know the constitutive
relation of the materials. Seeking some methods to solve these problems, many
researchers have continually studied for over 2000 years.

The pioneering works of theory of elasticity and plasticity were given by
Augustin Cauchy (1789—1857), Marie-Henri Navier (1785—1836), Leonard
Euler (1707—1783), Simon Denis Poisson (1781—1840), Barre de Saint-Venant
(1797—1886), Nikolai Ivanobich Mushihailishibili (1891—1976) , Ludwig
Prandtl (1875—1953), Thomas Young (1773—1829), Richard von Mises
(1883—1953), and many others.

The general principles employed in the study of theory of elasticity and
plasticity are the same as those used in studying the mechanics of continuous
medium. Their basic formulations can be attributed primarily to the work of Euler
and Cauchy. Euler first brought forward the general principles of linear and angular

3



momentum balance for continuous media upon which rest all continuum mechanics,
including theory of elasticity and plasticity. Cauchy first gave the concept of the
stress and strain at a point and also found the general differential equations of
motion or equilibrium of a continuum in term of the stress. Cauchy’s work on
elasticity provided a detailed kinematical theory of strain and deformation. The
extension of the mathematical theory to more general solids was first made by
Navier in 1821 using special assumption concerning the molecular forces of elastic
solids. Technical application began earliest in 1855, when Saint-Venant solved the
problem of the twisting of prismatic bars and worked out detailed numerical
results. Saint-Venant also took up the problem of plastic flow and developed
two-dimensional governing equations which were subsequently generalized to three
dimensions by M. Levy in 1871. In 1864 H. Tresca reported experiments to the
French Academy, which suggested that the plastic yielding of a metal occured
when the maximum shear stress reached to a critical value. After Tresca, in 1913
R.von Mises published his yield condition theory based on theory of distortional
energy. ’

In the last century (1901—2000), the theory of elasticity and plasticity had
been rapidly developed in theory and engineering practice. Many great contributors
should be mentioned, such as B. G. Galerkin, G.R.Kirchhoff, S.P.Timoshenko,
J.L.Lagrange, A.Nadai, A.A. I’ yushin, W.W. Sokolovsky, W.Prager, R.Hill,
Kh. A.Rakhmatulin, G.I.Taylor, P.Perzyna, and many others.

In this period, especially in last 50 years, theory of elasticity and plasticity
rapidly developed in China too. Qian Xuesen, Qian Weichang, Hu Haichang,
Wang Ren, Huang Kezhi, Xu Bingye, Wu Jike, Huang Zhuping, Gao Yuchen,
Wang Zigiang, and many others developed the theory of elasticity and plasticity,
specially in the engineering applications. In this period many valuable books about

elasticity and plasticity on theoretical and engineering applications were published.



A, g

2 Stress

2.1 Force and Stress

There are two kinds of forces: body force and surface force. The force acting
on each internal particle of body or structural members is so called body force. For
example, the gravity force, inertia force, the electromagnetic force and mass force,
etc. are all the body forces. The force acting on the surface of the body or structure
is so called surface force. For example, the wind load, the fluid pressure, the
contact force between two bodies, etc. are all the surface forces.

Now we discuss the magnitude and direction of body force and surface force of
a body in a coordinate Ozyz. Let us take a volume element AV at a point C, if
the body force of AV is AF, then the mean density of body force in this volume
element AV is AF/AV. When AV approaches to point C, the AF/AV will

approach to a limit vector F),

. AF _
Am, Ay = Fo (2.1)
Obviously, the direction of the body force vector F}, coincides with the limit
direction of body force in AV. The unit of the body force is N/m®. Suppose F), is
the mass force of unit mass at a neighborhood of point C, and let m = pdV is the
mass of volume element dV', p is the density of mass, mF}, is the force acting on

the mass of dV. Therefore the body force of unit volume is pF}.

Similarly, we can define the surface force vector F

. AF _
Im35F- @2

and the surface force acting on surface element dS is FdS.
We now give the concept of stress and denote the vector of internal force Ap
acting on the element of area AS, cut out from the cross section C at any point P

5



( Fig.2.1). The outward normal vector is represent by n. We observe that the
force acting on this elemental area, Z
due to the action of material of the
part B (which we throw aside) on
the material of part A, can be
reduced to a resultant Ap. If we

continuously contract the elemental

area AS, the limiting value of the
ratio Ap/AS gives us the magnitude

of the stress acting on the cross
section C at any point P. The limit Fig.2.1 Stress vector at & point P
direction of the resultant Ap is the

direction of the stress. In the general case the direction of the stress is inclined to
the area AS on which it acts and we can resolve it into two components: a normal
stress perpendicular to the area and a shearing stress acting in the plane of the area
AS. The stress vector ¢ is defined in terms of these quantities by the following
equation

o= lim — (2.3)

We now introduce the concept of stress tensor. To do this we first consider a
small hexahedral element of material about some point P in the body. Let the faces
of this element be parallel to the coordinate planes and on each of the six positive
faces, whose outward normals in the positive directions, resolve the associated

stress vectors into components along the coordinate directions as shown in

z Fig. 2.2. The notations used in

I % - this Figure in denoting the

o /{l anu IP;)_”: A, components of the stress vectors

=T |I"’ Tzd a acting on each of the positive

T”L > z? e faces are as follows: The first

P /r:,— _I‘; = A subscript denotes the coordinate

Ay axis along which the outward

o ? normal of the considered face

. points and the second subscript
Fig.2.2 Components of stress vector denotes the direction in which

the component acts. Thus for



example ¢, denotes the stress component of the stress vector acting on the faces
with normal along axis x, its direction is toward axis y. As a rule, the tension
stress is considered as positive stress, a compression stress is considered as a
negative stress. The components of stress tensor can be written by using a common
rule, which ¢ represents a normal component of stress, and r represents shearing
components of stress. From Fig. 2.2, it is easy to understand that when the small
hexahedral approaches to a limit as ‘infinitesimal’, the stresses on the hexahedral
represent the stress state at point P. Therefore the stress state at point P has all
total 9 components, in which 3 normal stresses and 6 shear stresses (in fact,

according to the shear stress reciprocal theorem, there are 3 shear stresses only).

2.2 Stress Tensor and Stress Deviation Tensor

The 9 components of stress may be represented by a second-crder tensor, in
which every row has 3 components of stress acting on one face at point P as follows
Or Toy Tae
Tye Oy Ty

Ter Tzy O

These 9 components of stress define a new physical quantity >, and it
describes just the stress state at point P. When we make a coordinate
transformation, every component of stress may change its quantities. But the new
physical quantity >, is unchanged at the same point P. As we know from
mathematics, when coordinate transforms of elementsobey a given coordinate
transformation rule, then they determine a second-order tensor, as is so called
stress tensor. Later we will see that the stress tensor is a symmetrical second-order

tensor

0= |Tye Oy Ty (2.4)
Ter Tay O
Here i,5 (=1, 2, 3) associate with the axes x, y, 2, and 7 represents rows
and j represents columns, and the normal stress is represented by o, the shear

stress is represented by 7. Therefore, it is clear that stress tensor perfectly

determines the stress state at a given point.

Now we discuss the principal stresses. Let that the direction n at a point in a
body is so oriented that the resultant stress vector p”, associated with direction is
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