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I. INTRODUCTION

The expression of extracellular polysaccharide (EPS) material is a com-
mon feature of many bacteria. This EPS coats the outside of the bacterial
cell and as a consequence plays an intimate role in mediating interactions
between the bacterium and its immediate environment. In certain cases
the polysaccharide may be tightly associated with the cell surface forming
a discrete structure termed a capsule, or it may be shed in the form of EPS
or slime. A number of roles have been assigned to polysaccharide
capsules and it is clear that in a variety of environments the expression
of a capsule confers a selective advantage to the host. The major compo-
nents of bacterial capsules are highly hydrated, high molecular weight
acidic polysaccharides that confer upon bacteria an overall negative
charge and hydrophilic properties. There is great structural diversity in
capsular polysaccharides both between different bacterial species but also
within the same bacterial species. This diversity is a consequence of not
only differences in the repeat monosaccharide components but also dif-
ferences in linkage between the different repeating monosaccharide units.
The selective pressure that has driven this diversity is unclear as are
the mechanisms by which it has been achieved. However, a consequence
of this structural diversity is that there exists a library of diverse poly-
saccharide structures within the microbiome that may be exploited to
engineer novel polysaccharide molecules with particular biochemical,
pharmacological, or immunological properties.

Il. FUNCTIONS OF BACTERIAL CAPSULES

A number of functions have been assigned to bacterial capsules in differ-
ent bacteria including adhesion, transmission, resistance to innate host
defenses, resistance to the host’s adaptive immune response, and intra-
cellular survival (Roberts, 1996). In certain cases it is possible to directly
correlate the function of the bacterial capsule with the chemical structure
of the capsular polysaccharide. For instance, the adhesion of Group A
Streptococci to pharyngeal cells mediated via the interaction between the
hyaluoronic acid capsule and CD44, the hyaluronic acid binding protein
(Cywes and Wessels, 2001). In the case of invasive pathogens an ability to
survive innate host defenses is essential. It has been known for a long time
that the expression of a polysaccharide capsule confers some measure of
resistance to complement-mediated killing (Roberts, 1996) even though
mechanistically the basis for this is not always clear. In the case of
capsules that contain sialic acid, binding of factor H and the inhibition
of the complement activation cascade can explain this resistance, but with
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other capsules it may be due to steric effects and masking the cell surface
form the membrane-attack complex. What is clear is that complement
mediated resistance is likely to involve a number of cell surface structures
which contribute to the overall effect (Burns and Hull, 1998, 1999). The
ability of capsules to confer resistance to phagocytosis by polymorphonu-
clear (PMNL) cells has long been assigned to the negatively charged
polysaccharide capsule and the repulsive effect on the negatively charged
cell surface of the PMNL (Roberts, 1996). However, it is likely that poor
opsonization with complement of encapsulated bacteria will also play a
role in this protection (Roberts, 1996). The Escherichia coli K1 capsule is
vital for intracellular survival and crossing the blood brain barrier (Kim
et al., 2003). Specifically, the K1 capsule moderates the maturation process
of E. coli containing vacuoles inside endothelial cells preventing fusion
with lysosomes (Kim et al., 2003). As such, expression of the K1 capsule is
critical to the pathology of the disease.

lll. CAPSULAR POLYSACCHARIDES IN E. coli

E. coli is a facultatively anaerobic, Gram-negative bacillus that forms part
of the commensal human bowel flora, but in the environment can be
found in soil and water, usually as the result of fecal contamination.
Although considered a commensal organism and widely used as a work-
horse in molecular biology research, E. coli is capable of causing a range of
diseases in humans and animals, including gastro-intestinal and urinary
tract infections, meningitis, and septicemia. A common feature of E. coli
isolates responsible for extraintestinal infections is the expression of a
polysaccharide capsule or K antigen. The expression of certain K antigens
is strongly associated with particular infections. For example, the K1
capsule is the most common capsule type found in isolates of E. coli
causing neonatal meningitis and urinary tract infection. The K5 polysac-
charide is associated both with urinary tract infection and sepsis, but not
with meningitis. In both cases, these capsules are more often found
associated with infection than in the normal intestinal flora of healthy
individuals (Kaijser and Jodal, 1984).

There are more than 80 different K antigens in E. coli, and originally,
they were divided into Groups I and II on the basis of serological, biosyn-
thetic and genetic data (Jann and Jann, 1997). The system has since been
restructured to take account solely of biochemical and genetic data, com-
prising four groups: Group 1 (Ia), Group 2 (II), Group 3 (III), and Group 4
(Ib) (Whitfield and Roberts, 1999). The following sections briefly consider
the genetics, biosynthesis and evolution of the capsular polysaccharides
of the related Groups 1 and 4, then Group 3, followed by a detailed
analysis of the Group 2 capsular polysaccharides.
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IV. E. coli GROUP | CAPSULES

Group 1 capsules, encoded by the cps locus located near his, are typified
by E. coli K30, which is a polymer of galactose, mannose, and glucuronic
acid. They are similar to those expressed by Klebsiella strains, although in
E. coli the capsular polysaccharide is expressed in two forms. The first
comprises one to several repeat units of the K polysaccharide linked to
lipid A-core, and is termed Kj ps (Dodgson et al., 1996). This is not synthe-
sized by Klebsiella spp. (Whitfield and Roberts, 1999). Lipid A and core are
two conserved constituent domains of LPS, the third being the highly
variable O antigen. All three components are synthesized separately and
ligated together later. Lipid A is formed from UDP-GIcNAc and fatty
acids that are transferred to a Kdo disaccharide. The core is an oligosac-
charide linker that is formed on lipid A by the sequential transfer of
glucose, galactose, and GlcNAc from their nucleotide precursors. The
second higher molecular weight polysaccharide forms the capsule
proper. In each case the repeating unit of the polysaccharide is identical.

The Group 1 capsule biosynthetic locus is a 16 kb region of DNA
encoding 12 ORFs located in the same region of DNA as the typical O
antigen biosynthetic locus in E. coli K-12 and strains bearing capsules from
Group 2, 3, or 4 (Drummelsmith and Whitfield, 1999; Rahn et al., 1999). The
Group 1 gene cluster is distinguished by the presence of an essential
polymerization and translocation region dedicated to capsule expression
(wzi-wzc) that is conserved between different strains of E. coli expressing
Group 1 capsules and K. pneumoniae (Whitfield, 2006). Strains bearing
Group 1 capsules are unable to co-express colanic acid, the first evidence
for which emerged when it was found that multicopy ResB in E. coli K30,
K1, K5, and K-12 resulted in a mucoid phenotype at 37°C, but only in
serotype K30 was mucoidy the result of serotype-specific capsular poly-
saccharide expression: in all of the other strains this was due to colanic acid
expression (Drummelsmith and Whitfield, 1999; Keenleyside et al., 1992).
Unlike bacteria belonging to Groups 2, 3, and 4, the genes responsible for
synthesis of this EPS have been lost from Group 1 strains, probably
through extensive DNA re-arrangements involving replacement of
the O-antigen synthesis region by a large segment of DNA laterally
transferred from K. pneumoniae (Rahn et al., 1999; Whitfield, 2006).

It is not known how Group 1 capsules are linked to the bacterial cell
surface, but unlike Kjpg, it does not involve LPS (Whitfield, 2006). The
repeat units of these capsules are formed on the cytoplasmic face of the
bacterial inner membrane followed by export across the inner membrane
and polymerization to form the capsular polysaccharide. The precursor
monosaccharides are first synthesized by the appropriate enzymes
(e.g., ManB and ManC are responsible for generating UDP-mannose).
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The glycosyltransferase enzyme WbaP then transfers galactose from free
UDP-galactose in the cytoplasm to undecaprenyl phosphate, a lipid
carrier molecule (Drummelsmith and Whitfield, 1999; Roberts, 1996).
A further glycosyl transferase, namely WbaZ, then completes the forma-
tion of the repeating unit backbone, -2)-a-Man-(1-3)-B-Gal-(1-. A side-
branch also exists, formed from repeating glucuronic acid and galactose
residues by the glycosyltransferase WcaN, which is linked to the main
polysaccharide chain by WcaO (Drummelsmith and Whitfield, 1999). The
repeat units are flipped across the bacterial inner membrane by an
unknown process involving Wzx before being attached to the reducing
terminus of the nascent undecaprenyl phosphate-linked polysaccharide at
its reducing terminus by Wzy on the periplasmic face of the inner mem-
brane. The Wzy protein is believed to function as a polymerase, although
this role has notbeen directly demonstrated (Whitfield, 2006). Mutations in
Wzy abolish capsule expression and reduce the length of K ps to one repeat
unit (Drummelsmith and Whitfield, 1999). At some point the length of the
nascent polymer must trigger export, and either Wzy or WaaL may play a
role in determining the chain length (Whitfield, 2006). Strains carrying
mutations in wzy are acapsular and add only one repeat unit onto Ky pg
(Drummelsmith and Whitfield, 1999). Polymerization is terminated for
Ky ps by Waal.-mediated transfer of the polymer to lipid A-core.
Translocation of the finished polymer involves the products of the
genes wza, wzb, and wzc, encoded within a polymerization and transloca-
tion locus located upstream of the serotype-specific biosynthetic loci.
Wzi (formerly orf3 or orfX) is not essential for capsule expression
(Drummelsmith and Whitfield, 1999), but wzi mutants show a significant
reduction in cell associated and cell-free polymer (Rahn et al., 2003). Wza
is a surface-exposed outer membrane lipoprotein that forms octameric
structures in the outer membrane, the bulk of which are exposed in the
periplasm, and is essential for surface presentation of capsule (Collins
et al., 2007; Dong et al., 2006; Drummelsmith and Whitfield, 2000; Nesper
et al., 2003). It represents the outer membrane accessory (OMA) protein of
Group 1 capsules. OMAs carry a conserved signal peptidase motif that,
after cleavage, is modified at a conserved cysteine residue to yield a
lipoprotein (Paulsen et al., 1997). Failure to acetylate Wza results in a
failure of capsule export and intracellular accumulation of capsule poly-
mer (Nesper et al., 2003). Wza is found associated with Wzc, interacting
via their periplasmic domains (Collins et al., 2007). Wza-Wzc interaction is
believed to hold Wza in an open conformation conducive to capsule
export, as the Wza octomer encloses a large central cavity with a 22A
pore (Collins et al., 2007). However, in the absence of Wzc, the Wza ring is
closed at both the periplasmic and external faces (Beis ef al., 2004; Dong
et al., 2006). Wzc is a tyrosine autokinase protein similar to the chain-
length regulating protein Wzz found in strains from other capsule groups.



