

# Wireless Transceiver Architecture

Bridging RF and
Digital Communications



## WIRELESS TRANSCEIVER ARCHITECTURE

BRIDGING RF AND DIGITAL COMMUNICATIONS

Pierre Baudin

WILEY

This edition first published 2015 © 2015 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Baudin, Pierre (Electrical engineer)

Wireless transceiver architecture : bridging RF and digital communications / Pierre Baudin. pages cm

Includes bibliographical references and index.

ISBN 978-1-118-87482-0 (hardback)

1. Radio-Transmitter-receivers. I. Title.

TK6564.3.B38 2014

621.384-dc23

2014011413

A catalogue record for this book is available from the British Library.

ISBN 9781118874820

Set in 10/12pt Times by Aptara Inc., New Delhi, India Printed and bound in Malaysia by Vivar Printing Sdn Bhd

1 2015

## WIRELESS TRANSCEIVER ARCHITECTURE

To my children, Hugo and Chloé, and in memory of my parents

此为试读,需要完整PDF请访问: www.ertongbook.com

#### Preface

The origins of this book lie in the frequent questions that I have been asked by colleagues in the different companies I have worked for about how to proceed in the dimensioning and optimization of a transceiver line-up. The recurrence of those questions, along with the problem of identifying suitable reference sources, made me think there could be a gap in the literature. There is indeed an abundant literature on the physical implementation of wireless transceivers (e.g. the RF/analog CMOS design), or on digital communications theory itself (e.g. the signal processing required), but little on how to proceed for dimensioning and optimizing a transceiver line-up.

Furthermore, the fact is that those questions were coming from two distinct categories of engineers. On the one hand, RF/analog designers are curious to understand how the specifications of their blocks are derived. On the other hand, the digital signal processing engineers in charge of the baseband algorithms need to understand the mechanisms involved in the degradation of the wanted signal along the line-up for optimizing their processing. Obviously, it is the job of an RFIC architect to make the link between the two communities and to attempt to overcome the communication problems between those two groups. Roughly speaking, you have on the one hand the baseband engineers that process complex envelopes while benchmarking their algorithms using AWGN, and on the other hand the RF/analog designers that optimize their designs based on the use of CW tones for evaluating the degradation of a signal expected to be modulated. Based on my experience, even if the difficulty in the discussion can be related somehow to the different nature of the technical issues addressed by the two communities, it is also closely related to the different formalisms traditionally used in those two domains of knowledge.

I therefore wrote this book with two aims in mind. I first tried to detail the mindset required, at least based on my professional experience, to take care of the system design of a transceiver. Expressed like this, we understand that the purpose is not to be exhaustive about how to perform such dimensioning for all the architectures one can imagine. Rather the goal is to explain the spirit of it, and how to initiate such work in practice. Conversely, in order to be able to react correctly whatever the architecture under consideration, there is a need to understand as far as possible the constraints we have to take into account in order to dimension a transceiver. Practically speaking, this means understanding the system design of transceiver line-up in its various aspects. We can, for instance, mention the need to understand the purpose of a transceiver from the signal processing perspective. Indeed, from the transmitted or received signal point of view, the transceiver implements nothing more than signal processing functions, mainly analog signal processing, but signal processing when all

xiv Preface

is said and done. Alternatively, we can mention the need to understand the various limitations one can face in the implementation of this analog signal processing using electronic devices. Those limitations can indeed be encountered whatever the architecture implemented.

I then also tried to unify the formalisms used in the various domains of knowledge involved in the field of wireless transceivers. In practice, this means considering the digital communications formalism and the extensive use of the complex envelope concept for modeling modulated RF signals. As discussed above, the first goal was to make easier the link between RF and digital communications people who need to work together in order to optimize a line-up. This approach also happens to have many additional benefits. It allows us to correctly define RF concepts for modulated signals often introduced in a more intuitive way. It also allows us to perform straightforward analytical derivations in many situations of interest, as in nonlinearity for instance, while allowing explicit graphical representations in the complex plane. I am now fully convinced that this formalism is of much interest to RF problems and I would be pleased if this book can help to propagate its use.

As a result, this book consists of three parts. Part I focuses on the explanation of what is expected from a transceiver. This part is composed of three chapters dedicated to the three areas that drive those requirements: (a) the digital communications theory itself, which allows us to define the minimum set of signal processing functions to be embedded in a transceiver, as well as introducing key concepts such as complex envelopes; (b) the electromagnetism theory, as theoretical results in the field of propagation allow us to explain some architectural constraints for transceivers; (c) the practical organization of wireless networks, as it drives most of the performance required from transceivers in practice. By the end of Part I we should thus have an understanding of the functionalities required in a transceiver as well as their associated performance.

Part II is then dedicated to a review of the limitations we face in the physical implementation using electronic devices of the signal processing functions derived in Part I. Those limitations are sorted into three groups, leading to three chapters dedicated to: (a) the noise sources to be considered in a line-up; (b) the nonlinearity in RF/analog components; (c) what are classically labeled RF impairments.

Part III then turns to the transceiver architecture and system design itself. We can now focus on how to dimension a transceiver that fulfills the requirements derived in Part I while taking into account the implementation limitations reviewed in Part II. Practically speaking, this is done through three chapters. The first of these is dedicated to the illustration of a transceiver budget for a given architecture. This shows how a practical line-up budget can be done, i.e. how the constraints linked to the implementation limitations can be balanced between the various blocks of a given line-up in order to achieve the performance. The second chapter reviews different architectures of transceivers. In contrast to what is done in the previous chapter, we can see here how the fundamental limitations of a given line-up can be overcome by changing its architecture. The third chapter then examines some algorithms classically used for improving or optimizing the performance of transceiver line-ups.

At this stage, I need to highlight that, due to the organization of the book, only the reasoning used for the architecture and system design of transceivers is discussed in Part III. All the theoretical results, as well as the description of the elementary phenomena that are involved in this area, are detailed in Parts I and II. As a result, I recommend that the reader should not embark on Part III without sufficient understanding of the phenomena discussed in Parts I and II.

Preface

To conclude, I would like to thank all those people who helped in completing this project. First of all, I would like to thank my former colleagues at Renesas who participated in one way or another during this project, i.e. Alexis Bisiaux, Pascal Le Corre, Mikaël Guenais, Stéphane Paquelet, Arnaud Rigollé, Patrick Savelli, and in particular Larbi Azzoug and Anis Latiri. Then, I would like to warmly thank Marc Hélier, who taught me microwave engineering at Supélec some years ago, and who was kind enough to go through Chapter 2. Finally, I would like to thank Fabrice Belvèze, as it was all the good technical discussions we had during the old STMicroelectronics times that first convinced me that it was interesting to using the digital communications formalism for the system design of transceiver line-up. Things have changed since then, but the origins are there.

Rennes, January 2014

#### List of Abbreviations

ABB Analog Baseband

ACPR Adjacent Channel Power Ratio

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity

ADC Analog to Digital Converter

ADPLL All Digital PLL

AFC Automatic Frequency Correction

AGC Automatic Gain Control
AM Amplitude Modulation

AWGN Additive White Gaussian Noise

BBIC Baseband IC BER Bit Error Rate

BTS Base Transceiver Station

CALLUM Combined Analog Locked Loop Universal Modulator

CCP Cross-Compression Point

CDMA Code Division Multiple Access

CDE Code Domain Error

CDF Cumulative Distribution Function

CCDF Complementary Cumulative Distribution Function

CDP Code Domain Power

CF Crest Factor

CMOS Complementary Metal Oxide Semiconductor CORDIC COordinate Rotation DIgital Computer

CP Compression Point
CW Continuous Wave

DAC Digital to Analog Converter

DC Direct Current

DNL Differential NonLinearity

DR Dynamic Range
DSB Double SideBand
DtyCy Duty Cycle

EDGE Enhanced Data Rates for GSM Evolution EER Envelope Elimination and Restoration

EMF ElectroMotive Force

EMI ElectroMagnetic Interference ERR Even Order Rejection Ratio

ET Envelope Tracking
EVM Error Vector Magnitude
FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

FE Front-End

FEM Front-End Module
FIR Finite Impulse Response
FM Frequency Modulation

FS Full Scale

GMSK Gaussian Minimum Shift Keying

GSM Global System for Mobile communications

HPSK Hybrid Phase Shift Keying

I/F InterFace

IC Integrated Circuit

ICP Input Compression Point ICCP Input Cross-Compression Point

IF Intermediate Frequency
IIP Input Intercept Point
IMD Intermodulation Distortion
INL Integral NonLinearity

IP Intercept Point
IPsat Input Saturated Power

IRR Image Rejection Ratio
ISI InterSymbol Interference
ISR Input Spurious Rejection

LINC Linear amplification using Nonlinear Component

LNA Low Noise Amplifier
LO Local Oscillator
LSB Least Significant Bit
LTE Long-Term Evolution
LUT LookUp Table

NCO Numerically Controlled Oscillator

NF Noise Figure

OCP Output Compression Point

OFDM Orthogonal Frequency Division Multiplexing

OIMD Output InterModulation Distortion

OIP Output Intercept Point
OPsat Output Saturated Power
OSR OverSampling Ratio
PA Power Amplifier

PAPR Peak to Average Power Ratio
PGA Programmable Gain Amplifier
PDF Probability Density Function
PFD Phase Frequency Detector

List of Abbreviations xix

PLL Phase Locked Loop
PM Phase Modulation
Psat Saturated Power
PSD Power Spectral Den

PSD Power Spectral Density PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

RF Radio Frequency

RFIC Radio Frequency Integrated Circuit

RL Return Loss

RMS Root Mean Square RRC Root Raised Cosine

RX Receiver RXFE RX Front-End

SEM Spectrum Emission Mask
SFDR Spurious Free Dynamic Range
SiNAD Signal to Noise and Distortion ratio
SNR Signal to Noise Power Ratio

SSB Single SideBand TDD Time Division Duplex

TDMA Time Division Multiple Access

TE Transverse Electric

TEM Transverse Electromagnetic

TM Transverse Magnetic
THD Total Harmonic Distortion

TX Transmitter
TRX Transceiver
UE User Equipment

VGA Variable Gain Amplifier VSWR Voltage Standing Wave Ratio

WCDMA Wideband CDMA

WSS Wide Sense Stationarity XM Cross-Modulation

ZIF Zero-IF

#### Nomenclature

```
time variables
t, \tau
f
                               frequency variable
                               angular frequency variable (= 2\pi f)
\omega
x(t)
                               continuous time signal
x[n]
                               discrete time signal
X(f), X(\omega)
                               frequency representations of x(t) or x[n]
                               Fourier transforms of x(t)
\mathcal{F}_{\{x(t)\}}(f), \mathcal{F}_{\{x(t)\}}(\omega)
v, i, j
                               voltage, current, current density
P, p(t)
                               in-phase, in-phase component
                               quadrature, quadrature component
Q, q(t)
                               \sqrt{-1}
j
Re{.}, Im{.}
                               real part, imaginary part
|.|, arg{.}
                               modulus, argument
                               complex conjugate
*
                               convolution
                               Dirac delta distribution
\delta(.)
U(.)
                               Heaviside unit step function
x_a(t)
                               analytical signal associated with x(t)
                               frequency domain representations of x_a(t)
X_{\rm a}(f), X_{\rm a}(\omega)
\hat{x}(t)
                               Hilbert transform of x(t)
\hat{X}(f), \hat{X}(\omega)
                               frequency domain representations of \hat{x}(t)
\tilde{x}(t)
                               complex envelope associated with x(t)
\underline{\tilde{X}}(f), \tilde{X}(\omega)
                               frequency domain representations of \tilde{x}(t)
(.)
                               time average value
\mathbb{E}\{.\}
                               stochastic expectation value
                               cross-correlation function (=\mathbb{E}\{x_{t_1}y_{t_2}^*\})
\gamma_{x \times y}(t_1, t_2)
                               autocorrelation function
\gamma_{x \times x}(t_1, t_2)
                               autocorrelation function in stationary case (=\mathbb{E}\{x_t x_{t-\tau}^*\})
\gamma_{x \times x}(\tau)
\Gamma_{x \times x}(f), \ \Gamma_{x \times x}(\omega)
                               power spectral densities of x(t)
                               vector, matrix
                               transpose
||.||
                               Hermitian norm
                               dot product
                               cross product
X
```

### Contents

| Prefac       | e                  |                                        |     | xiii |
|--------------|--------------------|----------------------------------------|-----|------|
| List of      | Abbre              | viations                               |     | xvii |
| Nomenclature |                    |                                        | xxi |      |
| Part I       | BETV               | WEEN MAXWELL AND SHANNON               |     |      |
| 1            | The D              | igital Communications Point of View    |     | 3    |
| 1.1          | Bandpa             | ass Signal Representation              |     | 4    |
|              | 1.1.1              | RF Signal Complex Modulation           |     | 4    |
|              | 1.1.2              | Complex Envelope Concept               |     | 8    |
|              | 1.1.3              | Bandpass Signals vs. Complex Envelopes |     | 13   |
| 1.2          | Bandpa             | ass Noise Representation               |     | 32   |
|              | 1.2.1              | Gaussian Components                    |     | 34   |
|              | 1.2.2              | Phase Noise vs. Amplitude Noise        |     | 38   |
| 1.3          | Digital            | Modulation Examples                    |     | 44   |
|              | 1.3.1              | Constant Envelope                      |     | 44   |
|              | 1.3.2              | Complex Modulation                     |     | 50   |
|              | 1.3.3              | Wideband Modulation                    |     | 56   |
| 1.4          | First T            | ransceiver Architecture                |     | 66   |
|              | 1.4.1              | Transmit Side                          |     | 67   |
|              | 1.4.2              | Receive Side                           |     | 69   |
| 2            | The E              | lectromagnetism Point of View          |     | 73   |
| 2.1          | Free S             | pace Radiation                         |     | 73   |
|              | 2.1.1              | Radiated Monochromatic Far-field       |     | 74   |
|              | 2.1.2              | Narrowband Modulated Fields            |     | 81   |
|              | 2.1.3              | Radiated Power                         |     | 89   |
|              | 2.1.4              | Free Space Path Loss                   |     | 94   |
| 2.2          | Guided Propagation |                                        |     | 98   |
|              | 2.2.1              | Transmission Lines                     |     | 98   |
|              | 2.2.2              | Amplitude Matching                     |     | 105  |
|              | 223                | Power Matchina                         |     | 107  |

| iii | Contents |
|-----|----------|
|     | Contents |

| 2.3  | The Pr | opagation Channel                          |  | 115 |
|------|--------|--------------------------------------------|--|-----|
|      | 2.3.1  | Static Behavior                            |  | 116 |
|      | 2.3.2  | Dynamic Behavior                           |  | 126 |
|      | 2.3.3  | Impact on Receivers                        |  | 134 |
| 3    | The W  | /ireless Standards Point of View           |  | 145 |
| 3.1  | Mediu  | m Access Strategies                        |  | 145 |
|      | 3.1.1  | Multiplexing Users                         |  | 145 |
|      | 3.1.2  | Multiplexing Uplink and Downlink           |  | 146 |
|      | 3.1.3  | Impact on Transceivers                     |  | 149 |
| 3.2  | Metric | s for Transmitters                         |  | 151 |
|      | 3.2.1  | Respect for the Wireless Environment       |  | 152 |
|      | 3.2.2  | Transmitted Signal Modulation Quality      |  | 161 |
| 3.3  | Metric | s for Receivers                            |  | 167 |
|      | 3.3.1  | Resistance to the Wireless Environment     |  | 167 |
|      | 3.3.2  | Received Signal Modulation Quality         |  | 174 |
| Part | II IMP | LEMENTATION LIMITATIONS                    |  |     |
| 4    | Noise  |                                            |  | 183 |
| 4.1  |        | g Electronic Noise                         |  | 184 |
| 1.1  | 4.1.1  |                                            |  | 184 |
|      | 4.1.2  | Thermal Noise                              |  | 184 |
| 4.2  |        | terization of Noisy Devices                |  | 186 |
| 6    | 4.2.1  | Noise Temperatures                         |  | 186 |
|      | 4.2.2  | Noise Factor                               |  | 191 |
|      | 4.2.3  | Noise Voltage and Current Sources          |  | 199 |
|      | 4.2.4  | Cascade of Noisy Devices                   |  | 210 |
|      | 4.2.5  | Illustration                               |  | 214 |
|      | 4.2.6  | SNR Degradation                            |  | 229 |
| 4.3  |        | ase Noise                                  |  | 231 |
|      | 4.3.1  | RF Synthesizers                            |  | 232 |
|      | 4.3.2  | Square LO Waveform for Chopper-like Mixers |  | 243 |
|      | 4.3.3  | System Impact                              |  | 252 |
| 4.4  |        | Error Vector Magnitude                     |  | 263 |
| 4.5  |        | zation Noise                               |  | 266 |
|      | 4.5.1  | Quantization Error as a Noise              |  | 267 |
|      | 4.5.2  | Sampling Effect on Quantization Noise      |  | 278 |
|      | 4.5.3  | Illustration                               |  | 282 |
| 4.6  |        | rsion Between Analog and Digital Worlds    |  | 287 |
|      | 4.6.1  | Analog to Digital Conversion               |  | 287 |
|      | 4.6.2  | Digital to Analog Conversion               |  | 302 |

Contents

ix

| 5.1.1       Smooth AM-AM Conversion       308         5.1.2       Phase/Frequency Only Modulated RF Signals       313         5.1.3       Complex Modulated RF Signals       339         5.1.4       SNR Improvement Due to RF Compression       377         5.2       Hard AM-AM Conversion       392         5.2.1       Hard Limiter Model       393         5.2.2       Hard Limiter Intercept Points       394         5.2.3       SNR Improvement in the Hard Limiter       398         5.3       AM-PM Conversion and the Memory Effect       402         5.3.1       Device Model       402         5.3.2       System Impacts       407         5.4       Baseband Devices       413         6       RF Impairments       417         6.1       Frequency Conversion       417         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversions       417         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.2       Image Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.3                                                                       | 5    | Nonlin  | earity                                    | 307 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-------------------------------------------|-----|
| 5.1.1         Smooth AM-AM Conversion Model         308           5.1.2         Phase/Frequency Only Modulated RF Signals         313           5.1.3         Complex Modulated RF Signals         339           5.1.4         SNR Improvement Due to RF Compression         377           5.2         Hard AM-AM Conversion         392           5.2.1         Hard Limiter Model         393           5.2.2         Hard Limiter Intercept Points         394           5.2.3         SNR Improvement in the Hard Limiter         398           5.3         AM-PM Conversion and the Memory Effect         402           5.3.1         Device Model         402           5.3.2         System Impacts         407           5.4         Baseband Devices         413           6         RF Impairments         417           6.1         Frequency Conversion         417           6.1.1         From Complex to Real Frequency Conversions         417           6.1.2         Image Signal         421           6.1.3         Reconsidering the Complex Frequency Conversion         423           6.1.4         Complex Signal Processing Approach         426           6.2         Gain and Phase Imbalance         437           | 5.1  |         |                                           | 308 |
| 5.1.2       Phase/Frequency Only Modulated RF Signals       313         5.1.3       Complex Modulated RF Signals       339         5.1.4       SNR Improvement Due to RF Compression       377         5.2       Hard AM-AM Conversion       392         5.2.1       Hard Limiter Model       393         5.2.2       Hard Limiter Intercept Points       394         5.2.3       SNR Improvement in the Hard Limiter       398         5.3       AM-PM Conversion and the Memory Effect       402         5.3.1       Device Model       402         5.3.2       System Impacts       407         5.4       Baseband Devices       413         6       RF Impairments       417         6.1       Frequency Conversion       417         6.1.1       From Complex to Real Frequency Conversions       417         6.1.2       Image Signal       421         6.1.1       From Complex Signal Processing Approach       426         6.2.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixe                                                                         |      | 5.1.1   | Smooth AM-AM Conversion Model             |     |
| 5.1.3       Complex Modulated RF Signals       339         5.1.4       SNR Improvement Due to RF Compression       377         5.2       Hard AM-AM Conversion       392         5.2.1       Hard Limiter Model       393         5.2.2       Hard Limiter Intercept Points       394         5.2.3       SNR Improvement in the Hard Limiter       398         5.3       AM-PM Conversion and the Memory Effect       402         5.3.1       Device Model       402         5.3.2       System Impacts       407         5.4       Baseband Devices       413         6       RF Impairments       417         6.1       Frequency Conversion       417         6.1.1       From Complex to Real Frequency Conversions       417         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.4       Complex Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers                                                                         |      | 5.1.2   | Phase/Frequency Only Modulated RF Signals |     |
| 5.1.4       SNR Improvement Due to RF Compression       377         5.2       Hard AM-AM Conversion       392         5.2.1       Hard Limiter Model       393         5.2.2       Hard Limiter Intercept Points       394         5.2.3       SNR Improvement in the Hard Limiter       398         5.3       AM-PM Conversion and the Memory Effect       402         5.3.1       Device Model       407         5.4       Baseband Devices       413         6       RF Impairments       417         6.1       Frequency Conversion       417         6.1.1       From Complex to Real Frequency Conversions       417         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.4       Complex Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4                                                                                |      | 5.1.3   |                                           |     |
| 5.2. Hard AM-AM Conversion       392         5.2.1 Hard Limiter Model       393         5.2.2 Hard Limiter Intercept Points       394         5.2.3 SNR Improvement in the Hard Limiter       398         5.3 AM-PM Conversion and the Memory Effect       402         5.3.1 Device Model       402         5.3.2 System Impacts       407         5.4 Baseband Devices       413         6 RF Impairments       417         6.1 Frequency Conversion       417         6.1.1 From Complex to Real Frequency Conversions       417         6.1.2 Image Signal       421         6.1.3 Reconsidering the Complex Frequency Conversion       423         6.1.4 Complex Signal Processing Approach       426         6.2 Gain and Phase Imbalance       437         6.2.1 Image Rejection Limitation       437         6.2.2 Signal Degradation       442         6.3 Mixer Implementation       453         6.3.1 Mixers as Choppers       453         6.3.2 Impairments in the LO Generation       455         6.4 Frequency Planning       482         6.4.1 Impact of the LO Spectral Content       483         6.4.2 Clock Spurs       487         6.5 DC Offset and LO Leakage       489         6.5.1 LO Leakage on                        |      | 5.1.4   |                                           |     |
| 5.2.1       Hard Limiter Model       393         5.2.2       Hard Limiter Intercept Points       394         5.2.3       SNR Improvement in the Hard Limiter       398         5.3       AM-PM Conversion and the Memory Effect       402         5.3.1       Device Model       402         5.3.2       System Impacts       407         5.4       Baseband Devices       413         6       RF Impairments       417         6.1       Frequency Conversion       417         6.1.1       From Complex to Real Frequency Conversions       417         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.4       Complex Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Chappers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.5.1       Inpact of the LO Spectra                                                                         | 5.2  | Hard A  |                                           |     |
| 5.2.2       Hard Limiter Intercept Points       394         5.2.3       SNR Improvement in the Hard Limiter       398         5.3       AM-PM Conversion and the Memory Effect       402         5.3.1       Device Model       402         5.3.2       System Impacts       407         5.4       Baseband Devices       413         6       RF Impairments       417         6.1       Frequency Conversion       417         6.1.1       From Complex to Real Frequency Conversions       417         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.4       Complex Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       487         6.5.2       DC Offset                                                                         |      | 5.2.1   | Hard Limiter Model                        |     |
| 5.2.3       SNR Improvement in the Hard Limiter       398         5.3       AM-PM Conversion and the Memory Effect       402         5.3.1       Device Model       402         5.3.2       System Impacts       407         5.4       Baseband Devices       413         6       RF Impairments       417         6.1       Frequency Conversion       417         6.1.1       From Complex to Real Frequency Conversions       421         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.4       Complex Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.5.2       DC Offset and LO Leakage       489         6.5.1       LO Leakage on                                                                          |      | 5.2.2   | Hard Limiter Intercept Points             |     |
| 5.3       AM-PM Conversion and the Memory Effect       402         5.3.1       Device Model       402         5.3.2       System Impacts       407         5.4       Baseband Devices       413         6       RF Impairments       417         6.1       Frequency Conversion       417         6.1.1       From Complex to Real Frequency Conversions       417         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.4       Complex Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side                                                                                  |      |         | 1                                         |     |
| 5.3.1       Device Model       402         5.3.2       System Impacts       407         5.4       Baseband Devices       413         6       RF Impairments       417         6.1       Frequency Conversion       417         6.1.1       From Complex to Real Frequency Conversions       417         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.4       Complex Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side       490         6.5.2       DC Offset on the Receive Side                                                                                         | 5.3  |         | A                                         |     |
| 5.3.2       System Impacts       407         5.4       Baseband Devices       413         6       RF Impairments       417         6.1       Frequency Conversion       417         6.1.1       From Complex to Real Frequency Conversions       417         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.4       Complex Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side       490         6.5.2       DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING <td></td> <td></td> <td></td> <td></td>                                        |      |         |                                           |     |
| 5.4       Baseband Devices       413         6       RF Impairments       417         6.1       Frequency Conversion       417         6.1.1       From Complex to Real Frequency Conversions       417         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.4       Complex Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side       490         6.5.2       DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         Transmitter       499                                                                                               |      |         |                                           |     |
| 6.1       Frequency Conversion       417         6.1.1       From Complex to Real Frequency Conversions       417         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.4       Complex Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side       490         6.5.2       DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         Transceiver Budgets       497         7.1       Architecture of a Simple Transceiver       497         7.2       Budgeting a Transmi                                                                      | 5.4  |         |                                           |     |
| 6.1       Frequency Conversion       417         6.1.1       From Complex to Real Frequency Conversions       417         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.4       Complex Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side       490         6.5.2       DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         Transceiver Budgets       497         7.1       Architecture of a Simple Transceiver       497         7.2       Budgeting a Transmi                                                                      |      |         |                                           |     |
| 6.1.1       From Complex to Real Frequency Conversions       417         6.1.2       Image Signal       421         6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.4       Complex Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side       490         6.5.2       DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         Transceiver Budgets       497         7.1       Architecture of a Simple Transceiver       497         7.2       Budgeting a Transmitter       499         7.2.1       Review of the                                                                       |      |         |                                           |     |
| 6.1.2 Image Signal       421         6.1.3 Reconsidering the Complex Frequency Conversion       423         6.1.4 Complex Signal Processing Approach       426         6.2 Gain and Phase Imbalance       437         6.2.1 Image Rejection Limitation       437         6.2.2 Signal Degradation       442         6.3 Mixer Implementation       453         6.3.1 Mixers as Choppers       453         6.3.2 Impairments in the LO Generation       455         6.4 Frequency Planning       482         6.4.1 Impact of the LO Spectral Content       483         6.4.2 Clock Spurs       487         6.5 DC Offset and LO Leakage       489         6.5.1 LO Leakage on the Transmit Side       490         6.5.2 DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         Transceiver Budgets       497         7.1 Architecture of a Simple Transceiver       497         7.2 Budgeting a Transmitter       499         7.2.1 Review of the ZIF TX Problem       499         7.2.2 Level Diagrams and Transmitter High Level Parameters       505         7.2.3 Budgets Linked to Respect for the Wireless Environment       511         7.2.4 Budgets Linked to the Modulation Quality       524      | 6.1  |         | •                                         |     |
| 6.1.3       Reconsidering the Complex Frequency Conversion       423         6.1.4       Complex Signal Processing Approach       426         6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side       490         6.5.2       DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         7.1       Architecture of a Simple Transceiver       497         7.2       Budgeting a Transmitter       499         7.2.1       Review of the ZIF TX Problem       499         7.2.2       Level Diagrams and Transmitter High Level Parameters       505         7.2.3       Budgets Linked to the Modulation Quality       524 </td <td></td> <td></td> <td></td> <td></td> |      |         |                                           |     |
| 6.1.4 Complex Signal Processing Approach       426         6.2 Gain and Phase Imbalance       437         6.2.1 Image Rejection Limitation       437         6.2.2 Signal Degradation       442         6.3 Mixer Implementation       453         6.3.1 Mixers as Choppers       453         6.3.2 Impairments in the LO Generation       455         6.4 Frequency Planning       482         6.4.1 Impact of the LO Spectral Content       483         6.4.2 Clock Spurs       487         6.5 DC Offset and LO Leakage       489         6.5.1 LO Leakage on the Transmit Side       490         6.5.2 DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         7.1 Architecture of a Simple Transceiver       497         7.2 Budgeting a Transmitter       499         7.2.1 Review of the ZIF TX Problem       499         7.2.2 Level Diagrams and Transmitter High Level Parameters       505         7.2.3 Budgets Linked to Respect for the Wireless Environment       511         7.2.4 Budgets Linked to the Modulation Quality       524                                                                                                                                                        |      |         |                                           |     |
| 6.2       Gain and Phase Imbalance       437         6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side       490         6.5.2       DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         7.1       Architecture of a Simple Transceiver       497         7.2       Budgeting a Transmitter       499         7.2.1       Review of the ZIF TX Problem       499         7.2.2       Level Diagrams and Transmitter High Level Parameters       505         7.2.3       Budgets Linked to Respect for the Wireless Environment       511         7.2.4       Budgets Linked to the Modulation Quality       524                                                                                                       |      |         |                                           |     |
| 6.2.1       Image Rejection Limitation       437         6.2.2       Signal Degradation       442         6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side       490         6.5.2       DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         Transceiver Budgets       497         7.1       Architecture of a Simple Transceiver       497         7.2       Budgeting a Transmitter       499         7.2.1       Review of the ZIF TX Problem       499         7.2.2       Level Diagrams and Transmitter High Level Parameters       505         7.2.3       Budgets Linked to Respect for the Wireless Environment       511         7.2.4       Budgets Linked to the Modulation Quality       524                                                                                                                      |      |         |                                           |     |
| 6.2.2 Signal Degradation 442 6.3 Mixer Implementation 453 6.3.1 Mixers as Choppers 453 6.3.2 Impairments in the LO Generation 455 6.4 Frequency Planning 482 6.4.1 Impact of the LO Spectral Content 483 6.4.2 Clock Spurs 487 6.5 DC Offset and LO Leakage 489 6.5.1 LO Leakage on the Transmit Side 490 6.5.2 DC Offset on the Receive Side 492  Part III TRANSCEIVER DIMENSIONING  7 Transceiver Budgets 497 7.1 Architecture of a Simple Transceiver 497 7.2 Budgeting a Transmitter 499 7.2.1 Review of the ZIF TX Problem 499 7.2.2 Level Diagrams and Transmitter High Level Parameters 505 7.2.3 Budgets Linked to Respect for the Wireless Environment 511 7.2.4 Budgets Linked to the Modulation Quality 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.2  |         |                                           |     |
| 6.3       Mixer Implementation       453         6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side       490         6.5.2       DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         Transceiver Budgets       497         7.1       Architecture of a Simple Transceiver       497         7.2       Budgeting a Transmitter       499         7.2.1       Review of the ZIF TX Problem       499         7.2.2       Level Diagrams and Transmitter High Level Parameters       505         7.2.3       Budgets Linked to Respect for the Wireless Environment       511         7.2.4       Budgets Linked to the Modulation Quality       524                                                                                                                                                                                                                                |      |         | Image Rejection Limitation                |     |
| 6.3.1       Mixers as Choppers       453         6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side       490         6.5.2       DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         Transceiver Budgets       497         7.1       Architecture of a Simple Transceiver       497         7.2       Budgeting a Transmitter       499         7.2.1       Review of the ZIF TX Problem       499         7.2.2       Level Diagrams and Transmitter High Level Parameters       505         7.2.3       Budgets Linked to Respect for the Wireless Environment       511         7.2.4       Budgets Linked to the Modulation Quality       524                                                                                                                                                                                                                                                                                 |      | 6.2.2   | Signal Degradation                        | 442 |
| 6.3.2       Impairments in the LO Generation       455         6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side       490         6.5.2       DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         7 In Architecture of a Simple Transceiver       497         7.2       Budgeting a Transmitter       499         7.2.1       Review of the ZIF TX Problem       499         7.2.2       Level Diagrams and Transmitter High Level Parameters       505         7.2.3       Budgets Linked to Respect for the Wireless Environment       511         7.2.4       Budgets Linked to the Modulation Quality       524                                                                                                                                                                                                                                                                                                                                                                             | 6.3  |         | mplementation                             | 453 |
| 6.4       Frequency Planning       482         6.4.1       Impact of the LO Spectral Content       483         6.4.2       Clock Spurs       487         6.5       DC Offset and LO Leakage       489         6.5.1       LO Leakage on the Transmit Side       490         6.5.2       DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         7 In architecture of a Simple Transceiver       497         7.2       Budgeting a Transmitter       499         7.2.1       Review of the ZIF TX Problem       499         7.2.2       Level Diagrams and Transmitter High Level Parameters       505         7.2.3       Budgets Linked to Respect for the Wireless Environment       511         7.2.4       Budgets Linked to the Modulation Quality       524                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 6.3.1   | Mixers as Choppers                        | 453 |
| 6.4.1 Impact of the LO Spectral Content       483         6.4.2 Clock Spurs       487         6.5 DC Offset and LO Leakage       489         6.5.1 LO Leakage on the Transmit Side       490         6.5.2 DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         7 Transceiver Budgets       497         7.1 Architecture of a Simple Transceiver       497         7.2 Budgeting a Transmitter       499         7.2.1 Review of the ZIF TX Problem       499         7.2.2 Level Diagrams and Transmitter High Level Parameters       505         7.2.3 Budgets Linked to Respect for the Wireless Environment       511         7.2.4 Budgets Linked to the Modulation Quality       524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 6.3.2   | Impairments in the LO Generation          | 455 |
| 6.4.2 Clock Spurs       487         6.5 DC Offset and LO Leakage       489         6.5.1 LO Leakage on the Transmit Side       490         6.5.2 DC Offset on the Receive Side       492         Part III TRANSCEIVER DIMENSIONING         7 Transceiver Budgets       497         7.1 Architecture of a Simple Transceiver       497         7.2 Budgeting a Transmitter       499         7.2.1 Review of the ZIF TX Problem       499         7.2.2 Level Diagrams and Transmitter High Level Parameters       505         7.2.3 Budgets Linked to Respect for the Wireless Environment       511         7.2.4 Budgets Linked to the Modulation Quality       524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4  | Freque  | ncy Planning                              | 482 |
| 6.5 DC Offset and LO Leakage 6.5.1 LO Leakage on the Transmit Side 6.5.2 DC Offset on the Receive Side  Part III TRANSCEIVER DIMENSIONING  7 Transceiver Budgets 7.1 Architecture of a Simple Transceiver 7.2 Budgeting a Transmitter 7.2.1 Review of the ZIF TX Problem 7.2.2 Level Diagrams and Transmitter High Level Parameters 7.2.3 Budgets Linked to Respect for the Wireless Environment 7.2.4 Budgets Linked to the Modulation Quality  489 490 490 491 492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 6.4.1   | Impact of the LO Spectral Content         | 483 |
| 6.5.1 LO Leakage on the Transmit Side 6.5.2 DC Offset on the Receive Side  490  Part III TRANSCEIVER DIMENSIONING  7 Transceiver Budgets 7.1 Architecture of a Simple Transceiver 497 7.2 Budgeting a Transmitter 7.2.1 Review of the ZIF TX Problem 7.2.2 Level Diagrams and Transmitter High Level Parameters 7.2.3 Budgets Linked to Respect for the Wireless Environment 7.2.4 Budgets Linked to the Modulation Quality  490  492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 6.4.2   | Clock Spurs                               | 487 |
| Part III TRANSCEIVER DIMENSIONING  7 Transceiver Budgets 7.1 Architecture of a Simple Transceiver 7.2 Budgeting a Transmitter 7.2.1 Review of the ZIF TX Problem 7.2.2 Level Diagrams and Transmitter High Level Parameters 7.2.3 Budgets Linked to Respect for the Wireless Environment 7.2.4 Budgets Linked to the Modulation Quality  492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.5  | DC Off  | set and LO Leakage                        | 489 |
| Part III TRANSCEIVER DIMENSIONING  7 Transceiver Budgets 497 7.1 Architecture of a Simple Transceiver 497 7.2 Budgeting a Transmitter 499 7.2.1 Review of the ZIF TX Problem 499 7.2.2 Level Diagrams and Transmitter High Level Parameters 505 7.2.3 Budgets Linked to Respect for the Wireless Environment 511 7.2.4 Budgets Linked to the Modulation Quality 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 6.5.1   | LO Leakage on the Transmit Side           | 490 |
| 7.1 Architecture of a Simple Transceiver 497 7.2 Budgeting a Transmitter 499 7.2.1 Review of the ZIF TX Problem 499 7.2.2 Level Diagrams and Transmitter High Level Parameters 505 7.2.3 Budgets Linked to Respect for the Wireless Environment 511 7.2.4 Budgets Linked to the Modulation Quality 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 6.5.2   | DC Offset on the Receive Side             | 492 |
| 7 Transceiver Budgets  7.1 Architecture of a Simple Transceiver  7.2 Budgeting a Transmitter  7.2.1 Review of the ZIF TX Problem  7.2.2 Level Diagrams and Transmitter High Level Parameters  7.2.3 Budgets Linked to Respect for the Wireless Environment  7.2.4 Budgets Linked to the Modulation Quality  497  499  505  710  507  508  509  509  509  509  509  509  509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |         |                                           |     |
| 7.1 Architecture of a Simple Transceiver 497 7.2 Budgeting a Transmitter 7.2.1 Review of the ZIF TX Problem 7.2.2 Level Diagrams and Transmitter High Level Parameters 7.2.3 Budgets Linked to Respect for the Wireless Environment 7.2.4 Budgets Linked to the Modulation Quality 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Part | III TRA | ANSCEIVER DIMENSIONING                    |     |
| 7.1 Architecture of a Simple Transceiver 497 7.2 Budgeting a Transmitter 499 7.2.1 Review of the ZIF TX Problem 499 7.2.2 Level Diagrams and Transmitter High Level Parameters 505 7.2.3 Budgets Linked to Respect for the Wireless Environment 511 7.2.4 Budgets Linked to the Modulation Quality 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7    | Transc  | eiver Budgets                             | 497 |
| 7.2 Budgeting a Transmitter 499 7.2.1 Review of the ZIF TX Problem 499 7.2.2 Level Diagrams and Transmitter High Level Parameters 505 7.2.3 Budgets Linked to Respect for the Wireless Environment 511 7.2.4 Budgets Linked to the Modulation Quality 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |         |                                           |     |
| 7.2.1 Review of the ZIF TX Problem 499 7.2.2 Level Diagrams and Transmitter High Level Parameters 505 7.2.3 Budgets Linked to Respect for the Wireless Environment 511 7.2.4 Budgets Linked to the Modulation Quality 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |         |                                           |     |
| <ul> <li>7.2.2 Level Diagrams and Transmitter High Level Parameters</li> <li>7.2.3 Budgets Linked to Respect for the Wireless Environment</li> <li>7.2.4 Budgets Linked to the Modulation Quality</li> <li>511</li> <li>524</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |         |                                           |     |
| <ul> <li>7.2.3 Budgets Linked to Respect for the Wireless Environment</li> <li>7.2.4 Budgets Linked to the Modulation Quality</li> <li>511</li> <li>524</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |         |                                           |     |
| 7.2.4 Budgets Linked to the Modulation Quality 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |         |                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |         |                                           |     |
| 7.2.3 CONCIUMON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 7.2.5   | Conclusion                                | 531 |

| X | Contents |
|---|----------|
|   |          |

| 7.3                  | Budget | ting a Receiver                                                          | 532                |
|----------------------|--------|--------------------------------------------------------------------------|--------------------|
|                      | 7.3.1  | Review of the ZIF RX Problem                                             | 532                |
|                      | 7.3.2  | Level Diagrams and Receiver High Level Parameters                        | 539                |
|                      | 7.3.3  | Budgets Linked to the Resistance to the Wireless Environment             | 554                |
|                      | 7.3.4  | Budgets Linked to the Modulation Quality                                 | 566                |
|                      | 7.3.5  | Conclusion                                                               | 580                |
|                      |        |                                                                          |                    |
| 8                    | Transo | ceiver Architectures                                                     | 583                |
| 8.1                  | Transn | nitters                                                                  | 583                |
|                      | 8.1.1  | Direct Conversion Transmitter                                            | 584                |
|                      | 8.1.2  | Heterodyne Transmitter                                                   | 588                |
|                      | 8.1.3  | Variable-IF Transmitter                                                  | 592                |
|                      | 8.1.4  | Real-IF Transmitter                                                      | 594                |
|                      | 8.1.5  | PLL Modulator                                                            | 596                |
|                      | 8.1.6  | Polar Transmitter                                                        | 602                |
|                      | 8.1.7  | Transmitter Architectures for Power Efficiency                           | 612                |
| 8.2                  | Receiv |                                                                          | 629                |
|                      | 8.2.1  | Direct Conversion Receiver                                               | 629                |
|                      | 8.2.2  | Heterodyne Receiver                                                      | 632                |
|                      | 8.2.3  | Low-IF Receiver                                                          | 635                |
|                      | 8.2.4  | PLL Demodulator                                                          | 639                |
|                      |        |                                                                          |                    |
| 9                    | 100    | thms for Transceivers                                                    | 643                |
| 9.1                  | Transn | nit Side                                                                 | 643                |
|                      | 9.1.1  | Power Control                                                            | 644                |
|                      | 9.1.2  | LO Leakage Cancellation                                                  | 650                |
|                      | 9.1.3  | P/Q Imbalance Compensation                                               | 654                |
|                      | 9.1.4  | Predistortion                                                            | 661                |
|                      | 9.1.5  | Automatic Frequency Correction                                           | 669                |
|                      | 9.1.6  | Cartesian to Polar Conversion                                            | 672                |
| 9.2                  | Receiv | e Side                                                                   | 675                |
|                      | 9.2.1  | Automatic Gain Control                                                   | 675                |
|                      | 9.2.2  | DC Offset Cancellation                                                   | 680                |
|                      | 9.2.3  | P/Q Imbalance Compensation                                               | 683                |
|                      | 9.2.4  | Linearization Techniques                                                 | 689                |
|                      | 9.2.5  | Automatic Frequency Correction                                           | 691                |
|                      |        |                                                                          |                    |
| A DDI                | NIDICE | C.                                                                       |                    |
| APPE                 | ENDICE |                                                                          |                    |
|                      |        |                                                                          |                    |
|                      | ndiv 1 | Composition                                                              | (07                |
| ~ ~                  | ndix 1 | Correlation                                                              | 697                |
| Appe<br>A1.1<br>A1.2 | Bandpa | Correlation ass Signals Correlations ties of Cross-Correlation Functions | <b>697</b> 697 703 |

| Appendix 2 Stationarity                     | 707 |
|---------------------------------------------|-----|
| A2.1 Stationary Bandpass Signals            | 707 |
| A2.2 Stationary Complex Envelopes           | 710 |
| A2.3 Gaussian Case                          | 711 |
| Appendix 3 Moments of Normal Random Vectors | 713 |
| A3.1 Real Normal Random Vectors             | 713 |
| A3.2 Complex Normal Random Vectors          | 716 |
| References                                  | 719 |
| Index                                       | 723 |