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Preface

The technical and scholarly interest in materials failure goes back almost
to the beginnings of classical mechanics and deformable body mechanics.
The effort to put order and organization into the field of failure charac-
terization and failure criteria has been unflagging over the ensuing time
span, measured in decades and even centuries. Despite the high level of
sustained activity, the long time rate of progress was agonizingly slow.

By many measures of difficulty, the treatment of failure in solids
(materials) is comparable to that of turbulence in fluids, both being con-
trolled by non-linear physical effects. It is only in the modern era that
the elements needed for constructing a complete, three-dimensional the-
ory of failure for homogeneous materials have coalesced into meaningful
forms. This book presents the derivation and a detailed examination of
the resultant general theory of failure for materials science and materials
engineering.

Chapter 1 outlines the materials failure problem and completely sets
the course for all that follows. The coverage spans the full range, starting
with the efforts from some of history’s greatest scientists and ultimately
leading to the most recent developments, such as the failure of aniso-
tropic fiber composite materials and an examination of microscale and
nanoscale failure. Many interrelated areas of the materials failure discip-
line are included. Although the coverage is broad, there is no compromise
in quality or rigor.

The world of materials synthesis and materials applications offers many
opportunities and many challenges. Few are of higher priority or in greater
need than that of understanding materials failure.






Recognition

This book could not have been written without the supporting founda-
tions of long-established elasticity theory and modern plasticity theory.
In this connection, a special note of remembrance and appreciation is
due to

Rodney Hill
and
Daniel C. Drucker

Their individual efforts (along with others) gave substance and clarity
to the plasticity formalism, and greatly helped to solidify it as a major
discipline alongside that of elasticity. With elasticity theory and plasticity
theory firmly in place, failure theory could complete the trilogy. Perhaps
this would have pleased Professor Drucker and Professor Hill, since each
of them took initial steps in that direction.



Technical Status and Challenges

A complete and comprehensive theory of failure for homogeneous mater-
ials is developed. The resulting general failure theory for isotropic
materials and its related failure criteria are calibrated by two proper-
ties: the uniaxial tensile and compressive strengths, 7' and C. From such
readily available data for most materials, the entire family of failure envel-
opes can be generated for any and all states of stress in any isotropic
material. It is not just a coincidence that the number of independent fail-
ure properties being at two is the same as the number of independent
elastic properties for isotropy. This relationship will be of considerable
consequence.

It will require a long and involved derivation to establish the opera-
tional capability and results mentioned briefly above. First, however, a
historical survey and evaluation must be conducted. Insofar as general
applications are concerned, the complete and absolute unsuitabilities are
detailed for the Mises, Tresca, Drucker—Prager, and Coulomb-Mohr fail-
ure criteria. Only the Mises form is satisfactory for a specific class of
materials—that being only for ductile metals. A general failure theory
must cover not only ductile metals but also brittle metals, glassy and
crystalline polymers, ceramics, glasses, and a variety of other isotropic
materials types, just as does elasticity theory. Treating failure criteria
with the appropriate and necessary generality has always remained an
unsolved and historically formidable problem, and significant progress
has been greatly impeded—even blocked.

The failure problem and its need for resolution provides the impetus
for the account and developments presented here. The end result is the
long-missing general theory of materials failure, contained herein. All of
this is made possible by a new and transparently clear physical insight
or recognition. It is that of an organizing principle whereby the entire
spectrum of isotropic materials can be characterized by and classified
by their uniaxial strengths ratio, 7/C. The limits on T/C define the
ductile and brittle limits of physical behavior. Two coordinated but com-
petitive failure criteria can then be derived: the polynomial-invariants
criterion and the fracture criterion—both expressed in terms of 7/C and
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with stress non-dimensionalized by C. This formalism identifies universal
failure forms applicable to all materials at the same T/C specification.
It is a complete and self-contained theory, secured by the two most basic
strength properties conceivable. It is the field theory of failure.

One of several unique features of the book is a thorough treatment of
ductile versus brittle behavior for isotropic materials. The fundamental
form for the ductile/brittle transition is derived as part of the failure
theory. A means for gauging ductility levels is a further outcome from
the derivation. Along with the experimental evaluation and verification
of the failure theory, many examples of failure behavior and applications
of failure criteria are presented.

The relationship of failure criteria (for homogeneous materials) to frac-
ture mechanics (for structures) is included. Rigorous definitions of yield
stress and strength are developed. Reasonably general treatments are
presented for anisotropic fiber composites failure as well as investiga-
tions into microscale and nanoscale aspects of failure. Last, but still very
important, there is a probe into damage models leading to failure and
a fairly extensive derivation of probabilistic failure and probabilistic life
prediction to complete the book. All of these technical areas are difficult
and important failure-related problems in their own right.

The intended use for the book is as follows. Although it is at a quite
high level, it fits in with mainstream mechanics of materials curricula
in materials science and in mechanical, aerospace, and civil engineering
departments. It is thus seen to be appropriate for both classroom use
(upper undergraduate or graduate) and for related research. Despite the
advanced level, the final forms of the failure criteria are totally practical
and adaptable for use by engineers having design responsibilities.

I am deeply appreciative of Stanford University and the Office of Naval
Research for creating and sustaining an environment that encourages the
best possible work. To a lifetime of friends and colleagues, I am grateful for
the opportunity to have interacted with them in such important, exciting,
and exacting fields.

Richard M. Christensen
Aeronautics and Astronautics Department
Stanford University
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1

The Perspective on Failure
and Direction of Approach

This book is concerned with the means and methods of three-dimensional
analysis for predicting materials failure. It is the first book on theoretic-
ally derived but physically based approaches for predicting the envelopes
of failure for all the major classes of materials. Such problems have almost
always been treated by empirical means. The approach uses the intrinsic
static strength properties for homogeneous materials to predict their
failure behavior in the complex multi-dimensional stress conditions of
physical applications.

1.1 Materials Failure Problem

The use of failure criteria has the same motivation as that when fracture
mechanics is used to predict the failure of structures due to extreme stress
concentration conditions at flaws in their load-bearing elements. In fact,
the failure criteria of concern here for homogeneous materials and fracture
mechanics comprise complementary disciplines. Each is intended to treat
a distinct and extremely broad class of problems.

The title of this book, The Theory of Materials Failure, has a mean-
ingful relationship with the titles and contents of the longstanding books
[1.1]-[1.3]:

e Theory of Elasticity, Timoshenko and Goodier
o Mathematical Theory of Elasticity, Sokolnikoff
e The Mathematical Theory of Plasticity, Hill

This book presumes familiarity with the notation and general coverage
of the above books, or other more recent but largely equivalent books.
More than that, it is the logical continuation and conclusion of these
and other similar books, in the following sense. Elasticity and plasticity
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provide part of the constitutive formulation for materials behavior. The
other part is the missing part; namely, what is the permissible range
for these behaviors? The range of behavior is restricted by failure, and
failure criteria are the related governing constitutive forms. In briefest,
broadest terms, this book is intended to supply the missing physical and
mathematical complement to all elasticity and plasticity books, especially
including the three classics noted above.

Specific to the coordinated opportunity represented by failure theory
is the example of elasticity theory itself. The tensor-based theory of elasti-
city has had a revolutionary effect on the way materials are made into
load-bearing structures. Elasticity is one of the oldest and most valued of
all field theories, and is applied as a standardized and required procedure
in virtually all applications. A tensor-based theory of failure would be the
full partner to elasticity theory. Failure characterization can be seen as
the three-dimensional completion and terminus of linear elastic behavior.
Plasticity theory and behavior does not contradict this; rather, it repres-
ents a more complex transition from the elastic state to failure in the case
of ductile materials. All of this is symptomatic of the physical problem
itself: the failure of materials due to excessive states of loading.

With or without plasticity, failure still essentially represents the ter-
minus of the elastic behavior. This will turn out to be a pivotal key
to the problem. In general, elasticity, plasticity, and failure theories
together comprise the continuum of materials responses to states of
imposed stress. Each requires its own constitutive formulation. Two of
the three corresponding knowledge bases are complete and standardized.
The third—failure—is strongly needed and long overdue.

1.2 Direction and Scope

The continuing problem and enduring challenge is to predict materials
failure behavior in general situations based upon knowledge of the loads
and minimal failure data obtained from testing. The data that are usu-
ally found in comprehensive handbooks and in textbooks are those of
the uniaxial tensile and compressive strengths. The historic activity for
isotropic materials has always been and still is to attempt to theoretic-
ally prescribe the general, multi-dimensional envelope that discriminates
between a safe and stable state of stress, and that of the total loss of the
load-bearing capability. Ideally, this failure envelope or failure criterion



