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Preface

Since the first edition was published twenty years ago, a lot of theoretical
results on geometric theory of membrane elasticity have been achieved. In
particular, the shape equation and boundary conditions for open lipid mem-
branes were obtained. The main changes in this second edition of the present
book, we add a chapter (Chapter 4) to explain how to calculate variational
problem on a surface with a free edge by using a new mathematical tool—
moving frame method and exterior differential forms, and how to derive the
shape equation and boundary conditions for open lipid membranes through
this new method. In addition, we also include the recent concise work on chi-
ral lipid membranes as a section in Chapter 5. In Chapter 6, we also mention
some topics that we have not fully investigated but they are also important
to geometric theory of membrane elasticity.

We owe our sincere gratitude to our colleagues such as Profs. Udo Seifert,
Jemal Guven, Ivailo Mladenov, Qiang Du and so on since many supplemental
results in this edition stem from their work. We also thank Pan Yang and
Yang Wang for their patient help in typing this manuscript. Finally, Zhan-
Chun Tu, Zhong-Can Ou-Yang and Ji-Xing Liu would like to dedicate this
edition to Prof. Yu-Zhang Xie who passed away on May 29, 2011.



Preface for the First Edition

Liquid crystal state was discovered by F. Reinitzer in 1888. A review article
written by G. Friedel in 1921 summarizes the general properties of liquid
crystals known up to that time. In that article the correlation between liquid
crystal and differential geometry was noticed for the first time. The focal conic
texture of smectic liquid crystals was shown to have its geometrical origin from
Dupin cyelides. However, for quite some time, geometrical studies on liquid
crystals were in a stagnant state. Based on the structural similarity between
smectic liquid crystal and fluid membrane, in 1973, W. Helfrich offered an
elastic theory of membranes in analogy with the curvature elasticity theory
of liquid crystals. Since then the study on the correlation between liquid
crystals, biomembranes and differential geometry attracts great attention to
both physicists and mathematicians. A review on the aspect of differential
geometry in the study of biomembranes was given by mathematician J. C. C.
Nitsch in 1993 [Q. Appl. Math. 51, 363 (1993)]. The present book is intended
to serve as an introduction to those who are interested in this subject.

This book gives a comprehensive treatment on the conditions of mechan-
ical equilibrium and the deformation of membranes as a surface problem in
differential geometry. It is aimed at readers engaging in the field of investi-
gation of the shape formation of membranes in liquid crystalline state with
differential geometry. It does not offer a compiled survey of all the results
obtained in this field. Since the pioneer publications by D. P. B. Canham
and W. Helfrich on the geometrical form of membrane elasticity in the early
1970’s, a lot of works on this cross disciplinary subject in physics, biology
and mathematics have been published. The literatures concerning this field
increase continuously. Many important results in which the shape problem of
membrane vesicles being treated numerically have been published by authors
such as W. Helfrich, H. Deuling, M. A. Peterson, S. Svetina, M. Wortis, R.
Lipowski, U. Seifert, and others. However, under the personal interests of the
present authors, the material chosen in this book is mainly limited in analyt-
ical results. They apologize to those authors whose beautiful results are not
included here.

One of us (Z.-C. Ou-Yang) wishes to express his grateful thanks to Prof.
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W. Helfrich for his kind guidance in leading him into this interesting field. We
thank many colleagues for their collaborating research in this field. Special
thanks are due to Profs. Peng Huan-wu, Hao Bai-Lin, Yu Lu and Su Zhao-
Bin for their great support of our working in this cross-disciplinary field of
theoretical physics and biology. Also we owe our sincere gratitude to many of
our collaborators Profs. Zheng Wei-mou, H. Naito, S. Komura, only mentioned
a few, with whom many results presented in this book were obtained. We
thank Dr. Haijun Zhou for his patient help in typing this manuscript. We also
thank World Scientific for waiting patiently for the long delayed submission
of the final edition of the manuscript.

Institute of Theoretical Physics Ou-Yang Zhong-Can
Beijing, China Liu Ji-Xing
December, 1998 Xie Yu-Zhang
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1

Introduction to Liquid Crystal
Biomembranes

In this chapter, firstly we are going to give a general description on liquid crys-
talline states, states which are different from the commonly known three states
of matter. The essential characteristic of liquid crystal, unlike ordinary liquid
state, is that the constituent molecules although have no positional order but
possess orientational order. Next, the two component system lyotropic liquid
crystal will be introduced. Then follows with discussions on the amphiphile-
water system, especially the liquid crystalline state of biomembranes, mainly
bilayers. Detailed discussion on the phase transitions in biomembranes will be
introduced next. The part of biochemistry of biomembrane on the molecular
factors affecting the phase transitions in lipid bilayers will also be included
in our discussion. Finally, a comprehensive introduction of the methods of
preparing artificial vesicles will be given, which may be helpful for experimen-
talists in investigating the shape transitions of vesicles. The subject matter
in this chapter is mainly taken from several well known books[/, especially,
many schematic figures are based on the book written by Datta.

1.1 Liquid Crystals

1.1.1 Mysterious Matter

Since 1960s there are several nice books which serve for teaching us a new
state of matter—liquid crystal® 3. In his famous book?, Nobel Prize Lau-
reate de Gennes remarked that liquid crystals are beautiful and mysterious.
This state shows different feature from our common knowledge that matter
exists in three states: solid, liquid, and gas. We are all confused by the name
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of liquid crystal when we encounter it for the first time: how can some thing
be in liquid state and in crystalline state at the same time?

To answer the question, let us start with a bit of history. The liquid
crystalline state of matter was discovered by botanist Reinitzer in 1888 who
observed that cholesteryl benzoate has “two melting points”. Crystals of
cholesteryl benzoate melt at 145°C to become a turbid liquid and turn clear at
179°C. This turbid state in a pure substance was unknown to people at that
time. At first Reinitzer thought it could be caused by the presence of impu-
rities. However, even under high purification the persistence of “two constant
melting points” makes the “impurity point of view” very suspicious. With
consideration of Reinitzer’s suggestion, Lehmann, a physicist, with the col-
laboration of several chemists studied systemically and found a large number
of substances with “two constant melting points”. They confirmed that the
turbid liquids, like crystals, are optically birefringent. Since then, the state
between the “two melting points” has been called variously as “anisotropic lig-
uid”, “paracrystal”, “mesomorphous state”, and by now commonly accepted
as liquid crystal, a name first used by Lehmann. The relation of the new state
with the common states of matter is illustrated in Fig. 1.1.

0000000000] {00000000000 10000000000 [=ga0000p20
- A A (-\ V/\u(\] Y \)%O v 0
0000000000 100000000007 P Ov@”OO‘OpOOQ Wﬂﬂ@fﬁ%ﬁ
0000000000~ 000000000 009 0 (100 =] 0 50 00y
0000000000] 000000000 0] 0000000000 otolt oYy
solid smectic nemactic isotropic
crystal liquid crystal liquid crystal liquid

Fig. 1.1 Two liquid crystal states and their relation with solid and liquid states

Experimental study revealed that not all molecules can achieve the liquid

crystalline statel2 3.

The liquid crystal phase can be observed in certain or-
ganic compounds composed of elongated molecules with an axial ratio around
4-8:1. But one should notice that some discotic molecules can also form lig-
uid crystals[3]. Basically, the anisotropic geometry of the molecular shape is
the origin of the formation of liquid crystalline state. A liquid crystal can

flow like an ordinary liquid but its other properties are strongly anisotropic.
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Among them the optical anisotropy, such as birefringence and optical activity,
is reminiscent of the crystal phase.

1.1.2 Orientational Order

In order to understand the nature of the liquid crystalline state, let us recall the
lattice structure of a crystal: the molecules are located on three-dimensional
periodic lattice sites, a state with long-range positional order. It is easy to
recognize that X-ray diffraction patterns in crystalline state show point-like
Bragg reflections. In contrast, molecules in isotropic liquid have only short-
range positional order. Their X-ray diffraction patterns show only broad and
diffuse Bragg reflections. In liquid crystals, the molecular long-range positional
order disappears, while their orientational order is a long-range one (i.e., on
macroscopic scale the directions of the long axes of the molecules are the
same in thermal average). Thereby the X-ray diffraction patterns in liquid
crystals appear to be different from both crystals (without point-structure)
and isotropic liquids (with some ring-like structure coming from cylindrical
symmetry).

To specify the orientational order in liquid crystalline phase we need two
quantities: the local preferred direction, n(r), and the amount of ordering,
S(r). n(r) is a unit vector called the director and S(r) is called the order
parameter2l. Here r is the position vector in liquid crystal. The existence
of both the director-field and the order parameter-field reflects the long-range
orientational order in the liquid crystalline state. The order parameter S is
a measure of the degree of alignment of the long axes of the molecules and is
usually defined by

8 =By /7r Py(cos ) f(0) sin6d8, {1
0

where 0 is the angle between the temporary direction of the molecular long-axis
and the director n, f(6) is a distribution function of the molecular orientation
corresponding to the local temperature, and Pa(cosf) = (3/2)cos?6 — 1/2.
Eq. (1.1) is simply the average value of Ps(cosf) over the orientation of all
molecules, since 27 f(#) sin d6 is just the fraction of molecules in a cone mak-
ing an angle between 6 and 6 + df with n. Here, we should remind our reader
that in discotics the director n may be taken as the average direction of their
short axes (normal to the surface of the molecules).

In isotropic phase, the distribution of the long axes of the molecules is at



