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Foundations of Geomagnetism



PREFACE

The idea for this book was Philip Stark’s: he suggested joining two of
the authors, Bob Parker and Cathy Constable, in a project to “tidy
up” George Backus’s lecture notes and to make George a present of
them in book form in time for his sixtieth birthday. Before this project
got properly started, Philip left San Diego for Berkeley, and when the
two of us still here began to look at the job seriously, we soon realized
the timetable was not practical. Nonetheless, Cambridge University
Press thought the idea was worth supporting and encouraged us to
continue. The spirit of the enterprise was still that of offering George
Backus a gift, rather than giving him more to do.

Over the years 1962 to 1994, George Backus has taught gradu-
ate level classes covering geomagnetism, mathematical techniques for
geophysics, tensors in geophysics, and various other aspects of mathe-
matical geophysics. Each time he taught, he would start from scratch,
composing for the students hundreds of pages of closely spaced, hand
written notes. He would devote himself entirely to the course each
time, putting aside research and administration while it was being
given. The level of the material was advanced, but the logical devel-
opment, completeness, and consistency of notation were so compelling
that generations of students came away enriched. Philip Stark’s idea
was to present something of this legacy to the world, but to spare
George the tedium of editing and collating.

George’s notes, on close inspection, comprise the solid mathe-
matical skeleton of the material, but he himself provided the flesh of
explanatory discourse and scientific context during his lectures. A
major part of the editors’ job has been to re-create the interpolatory
text. Another part of our work was to decide what material to keep.
Since we are both primarily geomagnetists, we felt more comfortable
building around a geomagnetic theme rather than one of the other
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xii Preface

topics on which George has lectured at length, such as continuum
mechanics or tensors. Even then, we could not keep everything; for
example, the material on the Haar measure for averaging over a sphere
from great circle paths could not be fitted neatly into the book. Only
in a few places, most notably the second half of Chapter 3, have we
felt the need to write new text to fill a gap.

The subject matter of Foundations of Geomagnetism is the math-
ematical and physical basis of the science of geomagnetism; graduate
students in the earth sciences are its intended audience. George
Backus has always been passionately concerned with the logical foun-
dation of scientific argument and mathematical rigor in quantitative
developments. Thus when he taught about the decomposition of a
magnetic field into its poloidal and toroidal parts, he would never
begin, “It can be shown that”; a proper account must start with
the demonstration that a unique decomposition of this kind is always
possible. Chapter 5 opens on this point. To build the foundations of
geomagnetism, George calls upon some unusual mathematical tools,
some of his own invention. The earth is nearly spherical, and geophysi-
cists continually need to treat vectors and solve differential equations
in spherical geometry. George shows how it is possible to maintain the
elegance of a coordinate-free notation and at the same time to preserve
the simplicity and familiarity of a Gibbs-like vector calculus for oper-
ators on a spherical surface. In this way he avoids the heavy baggage
of the currently fashionable coordinate-free differential geometry a la
Cartan. George’s notation is intuitively right for the problem.

The final form of the book consists of seven chapters. The first is a
brief overview of the phenomena that are of interest in geomagnetism.
It includes a sketch of the history of the subject, followed by a de-
scription of the geomagnetic field and its variability in time and space.
Chapter 2 concerns the classical theory of electromagnetism based on
Maxwell’s equations. We cover the physical and mathematical ideas
of sources for the electromagnetic field and how the vacuum form
of Maxwell’s equations is adapted for polarizable media. We discuss
the mathematical basis for the practice of neglecting small terms in an
equation, and in particular we justify the neglect in geomagnetic work
of the displacement current in Maxwell’s equations. The discussion of
sources introduces the concept of the separation of the magnetic field
into parts of internal and external origin.

Chapter 3 is devoted to spherical harmonics. The aim is to
develop from first principles all the standard results. The perspective
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and methods used are not the traditional ones, however. In particular,
the spherical harmonics of degree ¢ are exhibited as homogeneous
harmonic polynomials in z, y, and 2, which are treated as members
of a finite-dimensional vector space. We introduce an inner product
on the space and then consider an orthogonal basis for it. Various
linear operators mapping this space onto itself are used to explore
the symmetries of the system, and thereby to discover its properties,
such as the Addition Theorem, and the existence of a self-reproducing
kernel. Up to this point, the results have been independent of the
particular coordinate system. Once a special axis system is chosen, we
can develop explicit expressions for the traditional set of orthonormal
functions. We investigate the asymptotic properties of the functions,
derive recurrence relations among them, and describe a scheme for
their practical computation.

Chapter 4 gives the application of spherical harmonics in the
description of the main geomagnetic field. We study the question of
the uniqueness of the coefficients in a spherical harmonic expansion
containing internal and external parts. Other topics include the ge-
omagnetic power spectrum, downward continuation to the core, and
how little information about the sources is contained in the Gauss
coefficients.

The subject of Chapter 5 is the Mie representation, which is
the expression of a solenoidal field as a sum of poloidal and toroidal
parts. Again the theory is developed from first principles, begin-
ning with the Helmholtz representation for tangent vector fields on a
spherical surface, a useful representation in its own right. The Mie
representation is then applied to a variety of geomagnetic problems,
including the generalization of Gauss’ separation to regions containing
sources, outward diffusion of the toroidal magnetic field of the core,
geomagnetic sounding, and the free decay of magnetic fields in a
stationary core.

The material of the preceding chapters is brought to bear in
Chapter 6, where we consider the physical processes taking place in
the core of the earth. After a quick look at a simplified dynamo
model with only two degrees of freedom, we derive the full system
of partial differential equations governing the interaction of a moving
conducting fluid with an embedded magnetic field. To obtain the
version of Ohm’s law needed in a moving conductor, we must appeal
to relativistic physics. The two descriptions of a continuum, La-
grangian and Eulerian, are discussed and their relationship exposed.
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Two limiting problems are solved exactly: zero velocity and infinite
conductivity. The latter is shown to be a useful approximation in the
earth for time scales less than 100 years, and therefore of considerable
interest in the interpretation of the secular variation. We derive the
“frozen-flux” condition of Roberts and Scott, which, if valid, permits
us to deduce from the magnetic field what the fluid velocity is on the
lines where the radial field vanishes. The chapter closes with a sample
of dynamo theory, a mixture of brief qualitative summaries of some
important results together with a few topics laid out in mathematical
detail, including Cowling’s antidynamo theorem and a glimpse at
mean field dynamos, currently so popular.

The Mie representation and, to a lesser extent, spherical har-
monics are dependent on vector calculus on the surface of a sphere.
Chapter 7 is a compendium of mathematical theorems and results
needed elsewhere in the book. The chapter provides a general treat-
ment of linear operators that act on scalar and vector fields. The
general theory is specialized to the case of a spherical surface, and
the properties of those most useful operators, surface gradient and
surface curl, are then developed in some detail. Corresponding results
for more general surfaces are touched upon. Other topics in Chapter
7 include surface forms of the integral theorems of Stokes and Gauss,
and inclusion of jump discontinuities in those theorems and how this
affects the Helmholtz Theorem.

The two junior authors have both learned an enormous amount
by going over this material in detail. We can only hope some of
the craftsmanship and the intellectual discipline demonstrated by
this work has rubbed off on us. We are grateful to Philip Stark for
suggesting the project. We would also like to express our thanks to
Elaine Blackmore, who translated the hand written notes into TEX
with great speed and accuracy, all the more amazing given that this
was her first experience with TEX. We wish to express our gratitude
to the Director of Scripps Institution of Oceanography for the financial
help he provided as we were getting started. Cambridge University
Press and its editors deserve our gratitude for their patience and
understanding, as well as their enthusiasm for the idea. Once again,
we want to thank the senior author, George Backus, for his example
as a great scientist and a warm human being.

R. Parker
C. Constable
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1

THE MAIN FIELD

1.1 A Whirlwind Tour

In this chapter we go on a whirlwind tour of the subject matter of
geomagnetism. Far from being a comprehensive survey, this is an
outline of the observations and phenomena that geomagnetism aims
to understand. It is expected that every serious student of our science
will be familiar with everything in this chapter, but those from outside
the earth sciences may find the following summary helpful. The
following references will help fill in the gaps.

For an accessible yet scholarly summary of the history of geomag-
netism, one can find nothing that improves upon the final chapter in
Volume II of Geomagnetism by Chapman and Bartels (1962). The
short essay by Malin in the more recent Geomagnetism, edited by
Jacobs (1987), is another useful source. Appendix B of the paper
by Malin and Bullard (1981) gives a series of thumbnail sketches of
the important players in geomagnetism in Great Britain from 1570 to
1900. A fascinating history of the discovery of the reversing nature of
the main field can be found in The Road to Jaramillo (Glen, 1982).

A review of the spatial variation of the main field and the crustal
magnetic anomalies can be found in Jacobs’s Geomagnetism (1987).
The practical techniques of magnetic data interpretation, particularly
for fields originating in the crust, are thoroughly covered by Blakely
(1995). A detailed account of the phenomena of the magnetosphere
and the ionosphere is presented in Physics of Geomagnetic Phenom-
ena, edited by Matsushita and Campbell (1967); a more modern but
less detailed treatment is given by Parkinson (1983). These works are
also good places to read about the externally caused time variations,
but for detail of a purely descriptive kind, Volume I of Chapman and

1



2 1. The Main Field

Bartels (1962) remains the classic source. An excellent treatment of
the longer-period time variations is to be found in the monograph
by Merrill and McElhinny (1983), which also covers our other topics,
though with somewhat less authority.

1.2 History

The existence of magnetic forces, through the tendency of lodestones
to attract iron, has been known for perhaps 4000 years, having first
been noted in China. Lodestones, which are naturally magnetic pieces
of magnetite, are mentioned by Homer (ca 800 BC) and by later Greek
and Roman writers such as Pliny the Elder (24-79 AD). The use of
the magnetic field for navigational purposes cannot be unequivocally
identified until 1088 in China and nearly 100 years later in Europe.
Believing in the perfection of celestial phenomena, the early navigators
assumed a compass would point exactly to geographic north. But of
course this is mistaken, and the discrepancy, called variation in the
original accounts but now referred to as declination, was generally
recognized by the middle of the fifteenth century; its discovery in
Europe is sometimes erroneously credited to Christopher Columbus.
In 1581, Robert Norman (dates uncertain), a London instrument
maker, reported the fact that the true direction of the field was
not horizontal and that a compass needle, carefully balanced before
being magnetized, would point downward, or dip. Thus magnetic
inclination, as it is now called, was discovered.

It is time to introduce the first mathematical terms, the so-called
geomagnetic elements that describe the magnetic field vector at a
given point on the earth’s surface. The following are the traditional
names still in common use in the study of geomagnetism. We consider
a local Cartesian coordinate system with z pointing to geographic
north, y to the east, and z vertically downward. The magnetic ele-
ments X, Y, Z are the components of the magnetic field vector B in
this frame. (We will define exactly what a magnetic field vector is in
the next chapter.) Then the declination D is obtained from

tanD = Y/X. (1.2.1)

The total intensity, variously referred to as T or F, is obviously

F=VX2+Y2+ 22 (1.2.2)
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The horizontal intensity H is just
H=+vX2+Y2 (1.2.3)

Inclination, I, satisfies the equation
tanl = Z/H. (1.2.4)

Worldwide exploration by European navigators who measured decli-
nation and sometimes even inclination of the magnetic field enabled
William Gilbert (1540-1603), chief physician to Queen Elizabeth I,
to assemble a global picture of the field directions and to deduce that
“The earth is a great magnet.” He showed that a spherical lodestone,
which he called a terrella, was surrounded by a magnetic field whose
directional properties closely resembled those of the earth’s field. His
monumental book, De Magnete published in 1600, is widely regarded
as the first scientific text, being entirely free of the appeals to heavenly
causes and magic that were the common currency of explanation of
the day.

Although it was probably suspected when Gilbert wrote his trea-
tise, the fact that the earth’s field changes in time was explicitly denied
in De Magnete. In 1624, Edmund Gunter (1581-1626), professor
of astronomy at Gresham College, had collected observations that
pointed strongly to temporal variations in declination. His successor,
Henry Gellibrand (1597-1636), completed the study after Gunter’s
death and published the discovery of secular variation in 1635. By
1680, Edmund Halley (1656-1742) produced an amazingly prescient
model for the variation in terms of dipoles moving generally westward,
deep within the earth, making a circuit every 700 years. The westward
drift of small-scale features of the geomagnetic field is an important
clue about fluid motions of the core; today the period is estimated to
be about 2000 years.

An almost completely modern description of the main geomag-
netic field was obtained by Karl Friedrich Gauss (1777-1855), the
great German mathematician and geomagnetist. He completed the
notion of the magnetic field as a vector by defining and determining
its strength. Gauss invented spherical harmonics for the description of
the field (a subject that will occupy us later on) and deduced that the
origin of the main field is within the solid earth, not outside it, thus
confirming Gilbert’s early speculation. We will repeat an updated
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form of Gauss’ argument in Chapter 4. Gauss was responsible for set-
ting up a worldwide system of magnetic observatories, some of which
have been running continuously up to the present day. Of course, the
cgs unit of magnetic induction is named for Gauss, although we adhere
to the Systéme Internationale (SI) convention in which 1 tesla = 10?
gauss. Unlike the gauss, the tesla, named for the Polish-American
electrical engineer Nicola Tesla (1856-1943), is an inconvenient size
for geomagnetic use; generally the field intensities are referred to in
nanotesla (1 nT = 1079 tesla) or microtesla (1 uT = 107° tesla). It
was Gauss who first observed that strength of the main field at the
surface varies from a maximum of about 60 uT (or 0.6 gauss) at the
poles to about 30 uT at the equator. His theoretical results predicted
that the intensity drops off approximately as the inverse cube of the
distance from the earth’s center.

The major phenomenological discovery of the twentieth century
about the main geomagnetic field is the fact that the prominent
dipole has reversed polarity many hundreds of times during the earth’s
geological history. The study of the magnetization of rocks in France
and Italy led Bernard Brunhes (1867-1910) to conclude in 1906 that
the ancient magnetic field had the opposite direction from today’s.
In 1926 Paul Mercanton (1876-1963) came to the same conclusion
regarding rocks from Spitzbergen and Australia; Motonori Matuyama
(1884-1958) also deduced this from specimens taken in Japan and
Siberia. Yet for over half a century this evidence was not generally
regarded as conclusive for a variety of reasons. Most important, it was
not at all clear that rocks could retain magnetism gained millions of
years ago. Today much more about the physics of rock magnetism is
known and there is no real doubt that most rocks containing magnetic
minerals, both igneous and sedimentary, can record and preserve
almost indefinitely information about the field at the time when they
were formed. Stacey and Banerjee (1974) and O’Reilly (1984) provide
comprehensive treatments of the physics of rock magnetism. By 1963,
Cox, Doell, and Dalrymple had compelling evidence of reversals based
on radiometric ages; their measurements demonstrated conclusively
that the field was reversed all over the globe during a number of well-
defined epochs stretching back 4 million years; see Cox, et al. (1964).
In 1963 Vine and Matthews recognized the regular magnetic anomaly
stripes they had observed in the Indian Ocean as the record of the
reversing field in the seafloor rocks. Aside from the revolutionary
implications for geology, this great insight made it possible to establish



