PEARSON

B it BB EESNE £ RS @

~ Data Structures and Problem Solving Using Java
| Fourth Edition

B S AERE

(JavaiE S i) (554hR)

Mark Allen Weiss &

FATERF HhRtL

KEHENHETENEL HAMET] (D)

Data Structures and Problem Solving Using Java

Fourth Edition

R 519 5 o) @ K iR
(Java &5)

(3 4 O

MarkAllenWeséﬁ ﬁ;)\‘j‘; ﬂ; ;}T :

;;& 45 #1

BEXFHMA
=

English reprint edition copyright © 2010 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA

UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: Data Structures and Problem Solving Using Java, Fourth Edition by Mark Allen
Weiss, Copyright © 2010
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall, Inc.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special

Administrative Region of Hong Kong, Macao SAR and Taiwan).
A5 EIM 1 Pearson Education (BiAEHE HRER) FBUATEH KR HARAL HRRAT .

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR
and Macao SAR).
RFHEARKMEEN(AFEEPEEE. BiINFNITERRIITEESSHX)HEELT.

Tesc i AUR B A FSE S /S 01-2009-7731 2

ABHENE Pearson Education(354 2 5 HARE F)ELH RS, THREERNSINE.
MR, RN R. BNEEIREIE: 010-62782989 13701121933

& B 7E R4 B (CIP) £3E

B G e JESR A Java TESRR: 554 BR: TE3C/ (38) H (Weiss, M. A.) . SEIA. b3t &k A
2F AL, 2010.10

CREI BB AN E LB R GEERRD)

ISBN 978-7-302-23761-7

[. % . ©OF-- 1. OFEEH -SSR —HM —HE L @lava ES —RF R — i
K —#M—93x V. OTP311.12 @TP312

[iR A 30E CIP Bidit% s (2010) 45 168141 =

RiEYREE: Jehidh
RAEENHE]: AE

HAREIT: EHKEH R M hbe JERUERRFEEMERE A
http:/ /www.tup.com.cn BB %%: 100084
it = #l: 010-62770175 HB T4: 010-62786544

BRSIEERSE: 010-62795954, jsijc@tup.tsinghua.edu.cn

R 2 & {%: 010-62772015, zhiliang@tup.tsinghua.edu.cn
ED Rl &: JbREERKEN
% 9T &: b WE s Bgsrhl AT
& 17 &: SEHERE
Pi Z: 185X230 Epsk: 62.5
KR R 2010 % 10 A 1R 2] W 2010 4E 10 A 1 ENRI
ER #: 1~3000
E -t 99.00 0
iR 035087-0T

i B B

HEA 21], HARERLET. PGS E IR FRH TN EHRH0k
SR AA WIS . A REREROANS, EREAEZFHTIEMNE. REHE, #F
ABEFRERRNA WFN, DRZIEEEN. HriRERSEFOEMETEE, AT
INERFA B EFIER, HOE HIEAE K et B m R R) E Ah R B

FHERFELRRAEA 1996 FIT46, SEINEL HRAT G/E, REHHRT “REHHE
HENE CGEERO” F—RFI5I13EH, 22 EAEEOIQRF. BA 21 e, &
MNAFARE®BEHTEMERMRES WYL, E£OFREMLE, E—PF REENE, %
ZEBITAR, —nBEAEER XL X PhdE T R E S AR S AT HAEE
ESh22 LA BE B B, AT “CRFEIEN T HAE L EM AT GEEBO”, L
S o RTINS SR P A R UM O RCR AN L R B Feli] BEREE N LXK,
P A BATHER HSMH N BHF KR F B, URBAEE KRBT ENEE E I E 2
FM RS CGLERRD” MAEY, EEARRIMERNTE.

TR ikt

preface

This book is designed for a two-semester sequence in computer science,
beginning with what is typically known as Data Structures and continuing
with advanced data structures and algorithm analysis. It is appropriate for the
courses from both the two-course and three-course sequences in “B.1 Intro-
ductory Tracks,” as outlined in the final report of the Computing Curricula
2001 project (CC2001)—a joint undertaking of the ACM and the IEEE.

The content of the Data Structures course has been evolving for some
time. Although there is some general consensus concerning topic coverage,
considerable disagreement still exists over the details. One uniformly
‘accepted topic is principles of software development, most notably the con-
cepts of encapsulation and information hiding. Algorithmically, all Data
Structures courses tend to include an introduction to running-time analysis,
recursion, basic sorting algorithms, and elementary data structures. Many uni-
versities offer an advanced course that covers topics in data structures, algo-
rithms, and running-time analysis at a higher level. The material in this text
has been designed for use in both levels of courses, thus eliminating the need
to purchase a second textbook.

Although the most passionate debates in Data Structures revolve around
the choice of a programming language, other fundamental choices need to be
made:

B Whether to introduce object-oriented design or object-based
design early

8 The level of mathematical rigor

preface

® The appropriate balance between the implementation of data struc-
tures and their use

B Programming details related to the language chosen (for instance,
should GUISs be used early)

My goal in writing this text was to provide a practical introduction to data
structures and algorithms from the viewpoint of abstract thinking and prob-
lem solving. I tried to cover all the important details concerning the data
structures, their analyses, and their Java implementations, while staying away
from data structures that are theoretically interesting but not widely used. It is
impossible to cover all the different data structures, including their uses and
the analysis, described in this text in a single course. So I designed the text-
book to allow instructors flexibility in topic coverage. The instructor will need
to decide on an appropriate balance between practice and theory and then
choose the topics that best fit the course. As I discuss later in this Preface, 1
organized the text to minimize dependencies among the various chapters.

summary of changes
in the fourth edition

1. This edition provides additional discussion on using classes (Chapter 2),
writing classes (Chapter 3), and interfaces (Chapter 4).

2. Chapter 6 contains additional material discussing the running time of
lists, the use of maps, and the use of views in the Java Collections API.

3. The Scanner class is described, and code throughout the text makes use
of the Scanner class.

4. Chapter 9 describes and implements the 48-bit linear congruential gener-
ator that is part of both the Java and many C++ libraries.

5. Chapter 20 has new material on separate chaining hash tables and the
String hashCode method.

6. There are numerous revisions to the text that improve on the prose in the
previous edition.

7. Many new exercises are provided in Parts I, II, and IV.

a unique approach

My basic premise is that software development tools in all languages come with
large libraries, and many data structures are part of these libraries. I envision an
eventual shift in emphasis of data structures courses from implementation to

preface

use. In this book I take a unique approach by separating the data structures into
their specification and subsequent implementation and taking advantage of an
already existing data structures library, the Java Collections APL

A subset of the Collections API suitable for most applications is discussed
in a single chapter (Chapter 6) in Part Two. Part Two also covers basic analy-
sis techniques, recursion, and sorting. Part Three coiitains a host of applica-
tions that use the Collections API’s data structures. Implementation of the
Collections API is not shown until Part Four, once the data structures have
already been used. Because the Collections API is part of Java, students can
design large projects early on, using existing software components.

Despite the central use of the Collections API in this text, it is neither a book
on the Collections API nor a primer on implementing the Collections API spe-
cifically; it remains a book that emphasizes data structures and basic problem-
solving techniques. Of course, the general techniques used in the design of data
structures are applicable to the implementation of the Collections API, so sev-
eral chapters in Part Four include Collections API implementations. However,
instructors can choose the simpler implementations in Part Four that do not dis-
cuss the Collections API protocol. Chapter 6, which presents the Collections
API, is essential to understanding the code in Part Three. I attempted to use only
the basic parts of the Collections APIL.

Many instructors will prefer a more traditional approach in which each
data structure is defined, implemented, and then used. Because there is no
dependency between material in Parts Three and Four, a traditional course can
easily be taught from this book.

prerequisites

" Students using this book should have knowledge of either an object-oriented
or procedural programming language. Knowledge of basic features, including
primitive data types, operators, control structures, functions (methods), and
input and output (but not necessarily arrays and classes) is assumed.

Students who have taken a first course using C++ or Java may find the first
four chapters “light” reading in some places. However, other parts are definitely
“heavy” with Java details that may not have been covered in introductory courses.

Students who have had a first course in another language should begin at
Chapter 1 and proceed slowly. If a student would like to use a Java reference
book as well, some recommendations are given in Chapter 1.

Knowledge of discrete math is helpful but is not an absolute prerequi-
site. Several mathematical proofs are presented, but the more complex
proofs are preceded by a brief math review. Chapters 7 and 19-24 require

vi

preface

some degree of mathematical sophistication. The instructor may easily elect
to skip mathematical aspects of the proofs by presenting only the results.
All proofs in the text are clearly marked and are separate from the body of
the text.

java

This textbook presents material using the Java programming language. Java
is a language that is often examined in comparison with C++. Java offers
many benefits, and programmers often view Java as a safer, more portable,
and easier-to-use language than C++.

The use of Java requires that some decisions be made when writing a text-
book. Some of the decisions made are as follows:

1. The minimum required compiler is Java 5. Please make sure you are
using a compiler that is Java 5-compatible.

2. GUIs are not emphasized. Although GUIs are a nice feature in Java,
they seem to be an implementation detail rather than a core Data
Structures topic. We do not use Swing in the text, but because many
instructors may prefer to do so, a brief introduction to Swing is pro-
vided in Appendix B. ’

3. Applets are not emphasized. Applets use GUIs. Further, the focus of
the course is on data structures, rather than language features. Instruc-
tors who would like to discuss applets will need to supplement this
text with a Java reference. ’

4. Inner classes are used. Inner classes are used primarily in the imple-
mentation of the Collections API, and can be avoided by instructors
who prefer to do so.

5. The concept of a pointer is discussed when reference variables are
introduced. Java does not have a pointer type. Instead, it has a refer-
ence type. However, pointers have traditionally been an important
Data Structures topic that needs to be introduced. I illustrate the
concept of pointers in other languages when discussing reference
variables.

6. Threads are not discussed. Some members of the CS community
argue that multithreaded computing should become a core topic in the
introductory programming sequence. Although it is possible that this
will happen in the future, few introductory programming courses dis-
cuss this difficult topic.

preface

v

7. Some Java 5 features are not used. Including:

® Static imports, not used because in my opinion it actually makes
the code harder to read.

Enumerated types, not used because there were few places to
declare public enumerated types that would be usable by clients. In
the few possible places, it did not seem to help the code’s readability.

text organization

In this text I introduce Java and object-oriented programming (particularly
abstraction) in Part One. I discuss primitive types, reference types, and some
of the predefined classes and exceptions before proceeding to the design of
classes and inheritance.

In Part Two, I discuss Big-Oh and algorithmic paradigms, including
recursion and randomization. An entire chapter is devoted to sorting, and a
separate chapter contains a description of basic data structures. I use the Col-
lections API to present the interfaces and running times of the data structures.
At this point in the text, the instructor may take several approaches to present
the remaining material, including the following two.

1. Discuss the corresponding implementations (either the Collections
API versions or the simpler versions) in Part Four as each data struc-
ture is described. The instructor can ask students to extend the classes
in various ways, as suggested in the exercises.

2. Show how each Collections API class is used and cover implementa-
tion at a later point in the course. The case studies in Part Three can
be used to support this approach. As complete implementations are
available on every modern Java compiler, the instructor can use the
Collections API in programming projects. Details on using this
approach are given shortly.

Part Five describes advanced data structures such as splay trees, pairing
heaps, and the disjoint set data structure, which can be covered if time permits
or, more likely, in a follow-up course.

chapter-by-chapter text organization

Part One consists of four chapters that describe the basics of Java used
throughout the text. Chapter 1 describes primitive types and illustrates how to
write basic programs in Java. Chapter 2 discusses reference types and illustrates

viil

preface

the general concept of a pointer—even though Java does not have pointers—so
that students learn this important Data Structures topic. Several of the basic
reference types (strings, arrays, files, and Scanners) are illustrated, and the use
of exceptions is discussed. Chapter 3 continues this discussion by describing
how a class is implemented. Chapter 4 illustrates the use of inheritance in
designing hierarchies (including exception classes and I/O) and generic com-
ponents. Material on design patterns, including the wrapper, adapter, and dec-
orator patterns can be found in Part One. v

Part Two focuses on the basic algorithms and building blocks. In
Chapter 5 a complete discussion of time complexity and Big-Oh notation
is provided. Binary search is also discussed and analyzed. Chapter 6 is
crucial because it covers the Collections API and argues intuitively what
the running time of the supported operations should be for each data struc-
ture. (The implementation of these data structures, in both Collections
API-style and a simplified version, is not provided until Part Four). This
chapter also introduces the iterator pattern as well as nested, local, and
anonymous classes. Inner classes are deferred until Part Four, where they
are discussed as an implementation technique. Chapter 7 describes recur-
sion by first introducing the notion of proof by induction. It also discusses
divide-and-conquer, dynamic programming, and backtracking. A section
describes several recursive numerical algorithms that are used to imple-
ment the RSA cryptosystem. For many students, the material in the second
half of Chapter 7 is more suitable for a follow-up course. Chapter 8
describes, codes, and analyzes several basic sorting algorithms, including
the insertion sort, Shellsort, mergesort, and quicksort, as well as indirect
sorting. It also proves the classic lower bound for sorting and discusses the
related problems of selection. Finally, Chapter 9 is a short chapter that dis-
cusses random numbers, including their generation and use in randomized
algorithms.

Part Three provides several case studies, and each chapter is organized
around a general theme. Chapter 10 illustrates several important techniques
by examining games. Chapter 11 discusses the use of stacks in computer lan-
guages by examining an algorithm to check for balanced symbols and the
classic operator precedence parsing algorithm. Complete implementations
with code are provided for both algorithms. Chapter 12 discusses the basic
utilities of file compression and cross-reference generation, and provides a
complete implementation of both. Chapter 13 broadly examines simulation by
looking at one problem that can be viewed as a simulation and then at the
more classic event-driven simulation. Finally, Chapter 14 illustrates how data

preface

structures are used to implement several shortest path algorithms efficiently
for graphs.

Part Four presents the data structure implementations. Chapter 15 dis-
cusses inner classes as an implementation technique and illustrates their use
in the ArrayList implementation. In the remaining chapters of Part Four,
implementations that use simple protocols (insert, find, remove variations)
are provided. In some cases, Collections API implementations that tend to
use more complicated Java syntax (in addition to being complex because of
their large set of required operations) are presented. Some mathematics is
used in this part, especially in Chapters 19-21, and can be skipped at the dis-
cretion of the instructor. Chapter 16 provides implementations for both
stacks and queues. First these data structures are implemented using an
expanding array, then they are implemented using linked lists. The Collec-
tions API versions are discussed at the end of the chapter. General linked lists
are described in Chapter 17. Singly linked lists are illustrated with a simple
protocol, and the more complex Collections API version that uses doubly
linked lists is provided at the end of the chapter. Chapter 18 describes trees
and illustrates the basic traversal schemes. Chapter 19 is a detailed chapter
that provides several implementations of binary search trees. Initially, the
basic binary search tree is shown, and then a binary search tree that supports
order statistics is derived. AVL trees are discussed but not implemented, but
the more practical red-black trees and AA-trees are implemented. Then the
Collections API TreeSet and TreeMap are implemented. Finally, the B-tree is
examined. Chapter 20 discusses hash tables and implements the quadratic
probing scheme as part of HashSet and HashMap, after examination of a simpler
alternative. Chapter 21 describes the binary heap and examines heapsort and
external sorting.

Part Five contains material suitable for use in a more advanced course or for
general reference. The algorithms are accessible even at the first-year level.
However, for completeness, sophisticated mathematical analyses that are almost
certainly beyond the reach of a first-year student were included. Chapter 22
describes the splay tree, which is a binary search tree that seems to perform
extremely well in practice and is competitive with the binary heap in some
applications that require priority queues. Chapter 23 describes priority queues
that support merging operations and provides an implementation of the pairing
heap. Finally, Chapter 24 examines the classic disjoint set data structure.

The appendices contain additional Java reference material. Appendix A
lists the operators and their precedence. Appendix B has material on Swing,
and Appendix C describes the bitwise operators used in Chapter 12.

preface

chapter dependencies

Generally speaking, most chapters are independent of each other. However,
the following are some of the notable dependencies.

Part One (Tour of Java): The first four chapters should be covered in their
entirety in sequence first, prior to continuing on to the rest of the text.

Chapter 5 (Algorithm Analysis): This chapter should be covered prior
to Chapters 6 and 8. Recursion (Chapter 7) can be covered prior to
this chapter, but the instructor will have to gloss over some details
about avoiding inefficient recursion.

Chapter 6 (The Collections API): This chapter can be covered prior to
or in conjunction with material in Part Three or Four.

Chapter 7 (Recursion): The material in Sections 7.1-7.3 should be
covered prior to discussing recursive sorting algorithms, trees, the
Tic-Tac-Toe case study,.and shortest-path algorithms. Material such
as the RSA cryptosystem, dynamic programming, and backtracking
(unless Tic-Tac-Toe is discussed) is otherwise optional.

Chapter 8 (Sorting Algorithms): This chapter should follow Chapters
5 and 7. However, it is possible to cover Shellsort without Chapters 5
and 7. Shellsort is not recursive (hence there is no need for Chapter 7),
and a rigorous analysis of its running time is too complex and is not
covered in the book (hence there is little need for Chapter 5).

Chapter 15 (Inner Classes and Implementations of ArrayLists):
This material should precede the discussion of the Collections API
implementations.

Chapters 16 and 17 (Stacks and Queues/Linked Lists): These chapters
may be covered in either order. However, I prefer to cover Chapter 16
first because I believe that it presents a simpler example of linked lists.

Chapters 18 and 19 (Trees/ Binary Search Trees): These chapters can
be covered in either order or simultaneously.

separate entities

The other chapters have little or no dependencies:

Chapter 9 (Randomization): The material on random numbers can be
covered at any point as needed.

preface

B Part Three (Applications): Chapters 10-14 can be covered in con-
junction with or after the Collections API (in Chapter 6) and in
roughly any order. There are a few references to earlier chapters.
These include Section 10.2 (Tic-Tac-Toe), which refers to a discus-
sion in Section 7.7, and Section 12.2 (cross-reference generation),
which refers to similar lexical analysis code in Section 11.1 (balanced
symbol checking).

B Chapters 20 and 21 (Hash Tables/A Priority Queue): These chapters
can be covered at any point.

B Part Five (Advanced Data Structures): The material in Chapters
22-24 is self-contained and is typically covered in a follow-up course.

mathematics

I have attempted to provide mathematical rigor for use in Data Structures
courses that emphasize theory and for follow-up courses that require more
analysis. However, this material stands out from the main text in the form of
separate theorems and, in some cases, separate sections or subsections. Thus
it can be skipped by instructors in courses that deemphasize theory.

In all cases, the proof of a theorem is not necessary to the understanding
of the theorem’s meaning. This is another illustration of the separation of an
interface (the theorem statement) from its implementation (the proof). Some
inherently mathematical material, such as Section 7.4 (Numerical Applica-
tions of Recursion), can be skipped without affecting comprehension of the
rest of the chapter.

course organization

A crucial issue in teaching the course is deciding how the materials in Parts
Two—Four are to be used. The material in Part One should be covered in
depth, and the student should write one or two programs that illustrate the
design, implementation, testing of classes and generic classes, and perhaps
object-oriented design, using inheritance. Chapter 5 discusses Big-Oh nota-
tion. An exercise in which the student writes a short program and compares
the running time with an analysis can be given to test comprehension.

In the separation approach, the key concept of Chapter 6 is that different
data structures support different access schemes with different efficiency. Any
case study (except the Tic-Tac-Toe example that uses recursion) can be used

preface

to illustrate the applications of the data structures. In this way, the student can
see the data structure and how it is used but not how it is efficiently imple-
mented. This is truly a separation. Viewing things this way will greatly
enhance the ability of students to think abstractly. Students can also provide
simple implementations of some of the Collections API components (some
suggestions are given in the exercises in Chapter 6) and see the difference
between efficient data structure implementations in the existing Collections
API and inefficient data structure implementations that they will write. Stu-
dents can also be asked to extend the case study, but again, they are not
required to know any of the details of the data structures.

Efficient implementation of the data structures can be discussed after-
ward, and recursion can be introduced whenever the instructor feels it is
appropriate, provided it is prior to binary search trees. The details of sorting
can be discussed at any time after recursion. At this point, the course can con-
tinue by using the same case studies and experimenting with modifications to
the implementations of the data structures. For instance, the student can
experiment with various forms of balanced binary search trees.

Instructors who opt for a more traditional approach can simply discuss a
case study in Part Three after discussing a data structure implementation in
Part Four. Again, the book’s chapters are designed to be as independent of
each other as possible.

exercises

Exercises come in various flavors; I have provided four varieties. The basic In
Short exercise asks a simple question or requires hand-drawn simulations of an
algorithm described in the text. The In Theory section asks questions that either
require mathematical analysis or asks for theoretically interesting solutions to
problems. The In Practice section contains simple programming questions,
including questions about syntax or particularly tricky lines of code. Finally,
the Programming Projects section contains ideas for extended assignments.

pedagogical features

B Margin notes are used to highlight important topics.

B The Key Concepts section lists important terms along with definitions
and page references.

preface

xibi

B The Common Errors section at the end of each chapter provides a list
of commonly made errors.

B References for further reading are provided at the end of most chapters.

supplements

A variety of supplemental materials are available for this text. The following
resources are available at http://www.aw.com/cssupport for all readers of this
textbook:

B Source code files from the book. (The On the Internet section at the
end of each chapter lists the filenames for the chapter’s code.)

In addition, the following supplements are available to qualified instructors.
To access them, visit http://www.pearsonhighered.com/cs and search our cata-
log by title for Data Structures and Problem Solving Using Java. Once on the cat-
alog page for this book, select the link to Instructor Resources.

B PowerPoint slides of all figures in the book.

B [nstructor’s Guide that illustrates several approaches to the material.
It includes samples of test questions, assignments, and syllabi.
Answers to select exercises are also provided.

acknowledgments

Many, many people have helped me in the preparation of this book. Many
have already been acknowledged in the prior edition and the related C++ ver-
sion. Others, too numerous to list, have sent e-mail messages and pointed out
errors or inconsistencies in explanations that I have tried to fix in this edition.

For this edition I would like to thank my editor Michael Hirsch, editorial
assistant Stephanie Sellinger, senior production supervisor Marilyn Lloyd,
and project manager Rebecca Lazure and her team at Laserwords. Thanks
also go to Allison Michael and Erin Davis in marketing and Elena Sidorova
and Suzanne Heiser of Night & Day Design for a terrific cover.

Some of the material in this text is adapted from my textbook Efficient C
Programming: A Practical Approach (Prentice Hall, 1995) and is used with

®
&

xiv preface

permission of the publisher. I have included end-of-chapter references where
appropriate.

My World Wide Web page, http://www.cs.fiu.edu/~weiss, will contain
updated source code, an errata list, and a link for receiving bug reports.

M AW
Miami, Florida

contents

part one Tour of Java
chapter 1 primitive java

1.1 the general environment 4

1.2 the first program &5
124 comments §
122 main 6
1.2.3 terminal output 6

1.3 primitive types 6
131 the primitive types 6
1.3.2 constants 7
1.3.3 declaration and initialization of primitive types 7
1.3.4 terminal input and output 8

1.4 basic operators 8
144 assignment operators 9
1.4.2 binary arithmetic operators 10
143 unary operators 10
1.4.4 type conversions 10

1.5 conditional statements 11
151 relational and equality operators 11
152 logical operators 12
15.3 the if statement 13
154 the while statement 14
15,5 the for statement 14
156 the do statement 15

