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Preface

This book is intended to serve as a textbook for a course in algebraic topology
at the beginning graduate level. The main topics covered are the classification
of compact 2-manifolds, the fundamental group, covering spaces, singular
homology theory, and singular cohomology theory (including cup products
and the duality theorems of Poincaré and Alexander). It consists of material
from the first five chapters of the author’s earlier book Algebraic Topology:
An Introduction (GTM 56) together with almost all of his book Singular
Homology Theory (GTM 70). This material from the two earlier books has
been revised, corrected, and brought up to date. There is enough here for a
full-year course.

The author has tried to give a straightforward treatment of the subject
matter, stripped of all unnecessary deftnitions, terminology, and technical
machinery. He has also tried, wherever feasible, to emphasize the geometric
motivation behind the various concepts. Several applications of the methods
of algebraic topology to concrete geometrical-topological problems are given
(e.g., Brouwer fixed point theorem, Brouwer—Jordan separation theorem,
Invariance of Domain, Borsuk—Ulam theorem).

In the minds of some people, algebraic topology is a subject which is
“esoteric, specialized, and disjoint from the overall sweep of mathematical
thought.” It is the author’s fervent hope that the emphasis on the geometric
motivation for the various concepts, together with the examples of the applica-
tions of the subject will help to dispel this point of view.

The concepts and methods which are introduced are developed to the point
where they can actually be used to solve problems. For example, after defining
the fundamental group, the Seifert— Van Kampen theorem is introduced and
explained. This is the principal tool available for actually determining the
structure of the fundamental group of various spaces. Another such example
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is the cup product. Not only is the cup product defined and its principal
properties explained; cup products are actually determined in real, complex,
and quaternionic projective spaces, and these computations are then applied
to prove certain theorems.

In any exposition of a subject such as algebraic topology, the author has
to make choices at various stages. One such choice concerns the class of spaces
which will be emphasized. We have preferred to emphasize CW-complexes
rather than simplicial complexes. Another choice occurs in the actual defini-
tion of singular homology groups: Should one use singular simplices or
singular cubes? From a strictly logical point of view it does not matter because
the resulting homology and cohomology theories are isomorphic in all re-
spects. From a pedagogical point of view, it does make a difference, however.
In developing some of the basic properties of homology theory, such as the
homotopy property and the excision property, it is easier and quicker to use
the cubical theory. For that reason, we have chosen to use the cubical theory.
Of course, it is more traditional to use the simplicial theory; the author hopes
that possible prospective users of this book will not reject it because of their
respect for tradition alone.

The prospective user of this book can gain some idea of the material
contained in each chapter by glancing at the Contents. We are now going to
offer additional comments on some of the chapters.

In Chapter |, the classification theorem for compact 2-manifolds is dis-
cussed and explained. The proof of the theorem is by rather standard “cut and
paste” methods. While this chapter may not be logically necessary for the rest
of the book, it should not be skipped entirely because 2-manifolds provide a
rich source of examples throughout the book.

The general idea of a “universal mapping problem” is a unifying theme in
Chapters 111 and IV. In Chapter III this idea is used in the definition of free
groups and free products of groups. Students who are familiar with these
concepts can skip this chapter. In Chapter [V the Seifert~Van Kampen
theorem on the fundamental group of the union of two spaces is stated in
terms of the solution to a certain universal mapping problem. Various special
cases and examples are discussed in some detail.

The discussion of homology theory starts in Chapter VI, which contains a
summary of some of the basic properties of homology groups, and a survey
of some of the problems which originally motivated the development of
homology theory. While this chapter is not a prerequisite for the following
chapters from a strictly logical point of view, it should be extremely helpful
to students who are new to the subject.

Chapters VII, VIII, and IX are concerned solely with singular homology
with integer coefficients, perhaps the most basic aspect of the subject. Chapter
V111 gives various examples and applications of homology theory, including
a proof of the general Jordan-Brouwer separation theorem, and Brouwer’s
theorem on “Invariance of Domain.” Chapter IX explains a systematic method
of computing the integral homology groups of a regular CW-complex.
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In Chapter X we introduce homology with arbitrary coefficient groups.
This generalization is carried out by a systematic use of tensor products.
Tensor products also play a significant role in Chapter XI, which is concerned
with the homology groups of a product space, i.e., the Kiinneth theorem and
the Eilenberg—Zilber theorem.

Cohomology groups make their first appearance in Chapter XI1. Much of
this chapter of necessity depends on a systematic use of the Hom functor.
However, there is also a discussion of the geometric interpretation of cochains
and cocycles, a subject which is usually neglected. Chapter XIII contains a
systematic discussion of the various products: cup product, cap product, cross
product, etc. The cap product is used in Chapter XIV for the statement and
proof of the Poincaré duality theorem for manifolds. This chapter also con-
tains the famous Alexander duality theorem and the Lefschetz—Poincaré
duality theorem for manifolds with boundary. In Chapter XV we determine
cup products in real, complex, and quaternionic projective spaces. These
products are then used to prove the classical Borsuk—Ulam theorem, and to
give a discussion of the Hopf Invariant of a map of a (2n — 1)-sphere onto an
n-sphere.

The book ends with two appendices. Appendix A is devoted to a proof of
the famous theorem of DeRham, and Appendix B summarizes various basic
facts about permutation groups which are needed in Chapter V on covering
spaces.

At the end of many chapters there are notes which give further comments
on the subject matter, hints of more recent developments, or a brief history of
some of the ideas.

As mentioned above, there is enough material in this book for a full-year
course in algebraic topology. For a shorter course, Chapters 1-VIII would
give a good introduction to many of the basic ideas. Another possibility for
a shorter course would be to use Chapter 1, skip Chapters II through V, and
then take as many chapters after Chapter V as time permits. The author has
tried both of these shorter programs several times with good results.

Prerequisites

As in any book on algebraic topology, a knowledge of the basic facts of point
set topology is necessary. The reader should feel comfortable with such
notions as continuity, compactness, connectedness, homeomorphism, product
space, etc. From time to time we have found it necessary to make use of the
quotient space or identification space topology; this subject is discussed in the
more comprehensive textbooks on point set topology.

The amount of algebra the reader will need depends on how far along he
is in the book; in general, the farther he goes, the more algebraic knowledge
will be necessary. For Chapters II through V, only a basic, general knowledge
of group theory is necessary. Here the reader must understand such terms as
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group, subgroup, normal subgroup, homomorphism, quotient group, coset,
abelian group, and cyclic group. Moreover, it is hoped that he has seen enough
examples and worked enough exercises to have some feeling for the true
significance of these concepts. Most of the additional topics needed in group
theory are developed in Chapter III and in Appendix B. Most of the groups
which occur in these chapters are written multiplicatively.

From Chapter VI to the end of the book, most of the groups which occur
are abelian and are written additively. It would be desirable if the reader were
familiar with the structure theorem for finitely generated abelian groups (see
Theorem I11.3.6). Starting in Chapter X, the tensor product of abelian groups
is used; and from Chapter XII on the Hom functor is used. Also needed in a
few places are the first derived functors of tensor product and Hom (the
functors Tor and Ext). These functors are described in detail in books on
homological algebra and various other texts. At the appropriate places we
give complete references and a summary of their basic properties. In these
later chapters we also use some of the language of category theory for the sake
of convenience; however, no results or theorems of category theory are used.
In order to read Appendix A the reader must be familiar with differential forms
and differentiable manifolds.
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Notation and Terminology

The standard language and notation of set theory is used throughout. Some
more special notations that are used in this book are the following:

Z = ring of integers,

Q = field of all rational numbers,

R = field of all real numbers,

C = field of all complex numbers,

R" = set of all n-tuples (x,,..., x,) of real numbers,
C" = set of all n-tuples of complex numbers.

If x = (x;,...,x,) € R", then the norm or absolute value of x is
Ix| = (x} + x3 + -+ + x})'2

With this notation, we define the following standard subsets of R" for any
n>0:

E" = {xeR"|ix| 1},
U= {xeR"||x| <1},
57! = {xeR"||x| = 1}.

These spaces are called the closed n-dimensional disc or ball, the open n-
dimensional disc or ball, and the (n — 1)-dimensional sphere, respectively. Each
is topologized as a subset of Euclidean n-space, R". The symbols RP", CP",
and QP" are introduced in Chapter IX to denote n-dimensional real, complex,
and quaternionic projective space, respectively.

A homomorphism from one group to another is called an epimorphism il
it is onto, a monomorphism if it is one-to-one (i.¢., the kernel consists of a single
element) and an isomorphism if it is both one-to-one and onto. If h: 4 — Bis
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a homomorphism of abelian groups, the cokernel of h is the quotient group
B/h(A). A sequence of groups and homomorphisms such as

hy_, A

g An—l _— An — An+l -_—

is called exact il the kernel of each homomorphism is precisely the same as
the image of the preceding homomorphism. Such exact sequences play a big
role from Chapter VII on.
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