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Essential Quantum Optics

From Quantum Measurements to Black Holes

Covering some of the most exciting trends in quantum optics — quantum
entanglement, teleportation, and levitation — this textbook is ideal for
advanced undergraduate and graduate students. The book journeys through
the vast field of quantum optics following a single theme: light in media.
A wide range of subjects are covered, from the force of the quantum vacuum
to astrophysics, from quantum measurements to black holes.

Ideas are explained in detail and formulated so that students with
little prior knowledge of the subject can follow them. Each chapter
ends with several short questions followed by a more detailed home-
work problem, designed to test the reader and show how the ideas dis-
cussed can be applied. Solutions to homework problems are available at
www.cambridge.org /9780521145043

ULF LEONHARDT is Professor of Theoretical Physics at the University
of St Andrews. His research interests include quantum electrodynamics in
media and state reconstruction in quantum mechanics. He is one of the
inventors of invisibility devices and artificial black holes.
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Chapter 1
Introduction

1.1 A note to the reader

Quantum optics has grown from a sub-discipline in atomic, molecular,
and optical physics to a broad research area that bridges several
branches of physics and that captures the imagination of the public.
Quantum information science has put quantum optics into the spot-
light of modern physics, as has the physics of ultracold quantum gases
with its many spectacular connections to condensed-matter physics.
Yet through all these exciting developments quantum optics has main-
tained a characteristic core of ideas that I try to explain in this slim
volume.

Quantum optics focuses on the simplest quantum objects, usu-
ally light and few-level atoms, where quantum mechanics appears in
its purest form without the complications of more complex systems,
often demonstrating in the laboratory the thought experiments that the
founders of quantum mechanics dreamed of. Quantum optics has been,
and will be for the foreseeable future, quintessential quantum mechan-
ics, the quantum mechanics of simple systems, based on a core of simple
yet subtle ideas and experiments.

One of the strengths of quantum optics is the close connec-
tion between theory and experiment. Although this book necessarily
is theoretical, many of the theoretical ideas 1 describe are guided
by experiments or, in turn, have inspired experiments themselves.
Another strength of quantum optics is that it is done by individuals or
small teams. One single person or a small group can build and per-
form an entire experiment. One theorist can do all the calculations
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for an important problem, often with just pencil and paper. As
John A. Wheeler said, “It is nice to know that the computer understands
the problem, but I want to understand it, too.”

This book does not attempt to cover the entire field of quantum
optics. The book is focused and selective in the material it applies and
expounds, for three good reasons. One of these clearly is that students or
other readers do not need to know much in advance to understand this
book. You should have experience in working with quantum mechan-
ics at the level of British senior honours students or American junior
postgraduate students, and you should know the basics of classical elec-
tromagnetism — that is all. Everything else follows and is deduced and
explained without any need of further reference. But you should have
an inquisitive mind and be able to do mathematics. I use mathematics
as a tool, but I have tried to derive the main results with as little tech-
nical effort as possible. Most of the eight chapters of this book make a
one semester course, the senior honours course on quantum optics that
I have taught at St Andrews.

Another reason for being focused is that understanding is more
valuable than knowledge. It is better to study one subject in depth than
many on the surface. Understanding one subject well gives you confi-
dence to tackle many more and to anticipate their workings by analogy
and using your imagination. As Albert Einstein put it, “Imagination is
more important than knowledge. For knowledge is limited to all we now
know and understand, while imagination embraces the entire world, and
all there ever will be to know and understand.”

The third reason is the subject this book focuses on: light in media.
Media are transparent materials like glass, water or air, but space itself
may be regarded a medium for light, in particular the curved space of
gravity. Quantum electrodynamics in media has been the backbone of
quantum optics for the last 50 years and is likely to remain so for the
next. Another vital ingredient of quantum optics is the theory of irre-
versible quantum processes that has been highly developed in the theory
of the laser or in models of the quantum measurement process. A his-
torically important inspiration came from astronomy in the 1950s when
quantum fluctuations were used to measure the size of stars, whereupon
quantum fluctuations of light became a research subject in its own right.
Thinking about quantum fluctuations eventually led to experimental
tests of quantum nonlocality — testing the nature of reality itself — and
applications in quantum cryptography. These days, when cosmologists
no longer are “often in error but seldom in doubt” (Lev D. Landau)
quantum optics is beginning to play a serious role in cosmology, as
the observed fluctuations of the cosmic microwave background show.
Ideas from astrophysics also inspired applications of quantum optics
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in laboratory analogues of the event horizon. Quantum optics returns
to one of its roots. The quantum features of light in media even have
technological implications, they appear as vacuum forces in micro- and
nano machines. As I will describe, the subject of light in media contains
all these themes, from quantum measurements to black holes.'

So although this book focuses on the “light side” of quantum
optics, you will be amazed to see how many topics such a modest
subject contains. Here is an alphabet of samples: Aspect’s experiment,
Bell’s Theorem, Casimir Forces, Dielectric Media, Einstein’s Relativ-
ity, Fluctuations, Gibbs Ensembles, Hawking Radiation, Irreversibility,
Joint Measurements of Position and Momentum, Katzen (in German
Cats, here Schrodinger Cats), Lindblad’s Theorem, Models of the Mea-
surement Process, Non-Classical Light, Optical Homodyne Tomogra-
phy, Polarization Correlations, Quantum Communication, Reversible
Dynamics, Squeezed Light, Teleportation, Unruh Effect, Vacuum
Noise, Wave—Particle Dualism, x and y Coordinates, and Zero Point
Energy. I hope the story of this journey through quantum optics is told
with sufficient clarity and occasional amusement for the reader. I also
hope to have captured not only the sights and insights on the way, but
also the sense of excitement and adventure.

1.2 Quantum theory

Let us recall the basic axioms of quantum theory, and let us try to moti-
vate them. This book is of course not the place for a comprehensive
development of the theory. We assume that the reader is already famil-
iar with the basic formalism of quantum mechanics. However, because
some of the ideas touched on in this book illustrate fundamental issues
of quantum physics, we would find it appropriate to turn “back to the
roots of quantum mechanics” in a brief and certainly incomplete sur-
vey. Moreover, not all readers may have mastered quantum statistics —
the formalism of density matrices — and so it is worthwhile to explain
this theory here, with apologies to those who know it already. Let us first
sketch, in a couple of lines, one possible way of motivating the principal
ideas of quantum theory.

1.2.1 Axioms

“At the heart of quantum mechanics lies the superposition principle” —
to quote from the first chapter of Dirac’s classic treatise (Dirac, 1984);

! This book evolved from my monograph Measuring the Quantum State of Light
(Leonhardt, 1997a). Hopefully it turned into a fully fledged textbook of Quantum
Optics.
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“.. any two or more states may be superposed to give a new state”
(Schleich et al., 1991). We denote the state of a perfectly prepared
quantum object by [¥). Then, according to this principle, the com-
plex superposition ¢i|y1) + c2|¥2) of two states [Y1) and [y2) is a
possible state as well. In other words, perfectly prepared states, called
pure states, are vectors in a complex space. The superposition principle
alone does not make physical predictions, it only prepares the ground
for quantum mechanics. Nevertheless, the principle is highly nontriv-
ial and can hardly be derived or taken for granted. In the history of
quantum mechanics the superposition principle was motivated by the
wavelike interference of material particles. Note, however, that this sim-
ple principle experienced a dramatic generalization such that we cannot
consider its historical origin as a physical motivation any more.

Let us now turn to more physical assumptions. When we observe a
physical quantity of an ensemble of equally prepared states, we obtain
certain measurement values a (real numbers) with probabilities p,.
Given a result a, we assume that we would obtain the same result if we
repeated the experiment immediately after the first measurement (pro-
vided, of course, that the physical object has not been destroyed). This
assumption is certainly plausible. As a consequence, the object must
have jumped into a state |a), called an eigenstate, which gives the mea-
surement result with certainty, an event called the collapse of the state
vector. Or, if we prefer to assign states only to ensembles of objects,
a measurement produces a statistical ensemble of states |a) with prob-
ability p,. According to the superposition principle we can expand the
state vector [1/) before the measurement in terms of the eigenstates |a),
written as |) = Y (aly)]a), with some complex numbers denoted by
the symbol (a|yr). What is the probability for the transition from |i/) to
a particular |a)? Clearly, the larger the (a|{/) component is (compared to
all other components) the larger should be p,. However, this component
is a complex number in general. So the simplest possible expression for
the transition probability is the ratio

|(aly)|?

—_— 1.1
W) Wi

Pa =

Here (¥/|y) abbreviates simply the sum of all |(a|)|? values. It is a
special case of the more general symbol

W'y =Y (¥la)aly) (12)

a

with the convention

(Wla) = (aly)*. (1.3)
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The mathematical construction (1.2) of the symbol (y/|v) fulfils all
requirements of a scalar product in a vector space. However, at this stage
the scalar product depends critically on a particular set of eigenstates
|a) or, in other words, on a particular experiment. Let us assume that all
possible sets of physical eigenstates form the same scalar product so that
no experimental setting is favoured or discriminated against in principle.
This assumption seems to be natural yet it is nontrivial. If we accept
this, then the symbol (¥’|1) describes the scalar product in the linear
state space. We can employ Dirac’s convenient bracket formalism, and
in particular we can understand the (a|y¥) components as orthogonal
projections of the |y) vector onto the eigenstates |a).

Formula (1.1) is the key axiom of quantum mechanics. It makes a
quantitative prediction about an event in physical reality (the occurrence
of the measurement result a), and it contains implicitly the superposition
principle for describing quantum states. The historical origin of this fun-
damental principle is Born’s probability interpretation of the modulus
square of the Schrodinger wave function.

Now we are in a position to reproduce the basic formalism of quan-
tum mechanics. Because the probability p, does not depend on the
normalization of the state vector |), we may simplify formula (1.1)
by considering only normalized states, that is we set

(V) =1. (1.4)

Because the eigenstates produce the measurement result a with cer-
tainty, they must be orthonormal

(ald) =844 (1.5)

Furthermore, the system of eigenvectors must be complete
> lay(al =1 (1.6)
a

if we assume that any observation gives at least one of the values a
so that )~ p, = (¥|>_, la)(a| | ) equals unity for all states |y/). The
average (A) of the measurement values « is given by

(A) = apa = (VIAlY) (1.7)

where we have introduced the operator

A52a|a)<a| (1.8)

with eigenvalues a and eigenvectors |a). (The structure (1.8) explains
the term eigenvectors for the measurement produced states |a).) The
operator A is Hermitian,

AT =4, (1.9)

5
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because the measurement results a are real. Observable quantities
thus correspond to Hermitian operators; their eigenstates are the states
assumed after measurement and the eigenvalues are the measurement
results.

Suppose that after the measurement of the observable quantity A the
object is in the eigenstate |a). What happens when we subsequently per-
form another measurement of the observable B? Clearly, the quantum
object will now assume one of the eigenstates of B. But the two sets of
eigenstates, {|a)} and {|b)}, may ditfer. As the overlap |(a|b)|* gives the
probability of observing b after a, the measurement result b is statisti-
cally uncertain if the overlap is not perfect, [{alb)|? < 1. In this case,
the two operators A and B do not commute,

AB +# BA, (1.10)
because otherwise they would share the same system of eigenstates. The
degree of commutation is characterized by the commutator

[A.B] =AB - BA, (1.11)

an anti-Hermitian operator C for Hermitian A and B, with C" =—C.
Incompatible observables correspond to non-commuting operators.
They cause mutual statistical uncertainty of measurement results, an
uncertainty that can be quantified in uncertainty relations, for example
in relation (5.61) that we use later on.

We must mention another fundamental axiom of quantum mechan-
ics concerning the composition of physical objects. If one system
consists of, say, two subsystems, then the theory should allow us to
experiment on each of the subsystems independently. We would obtain
two real measurement values (ay, az) and if we had repeated the same
experiment immediately after the first measurement we would read
the same values (ay, az). Furthermore, we would also obtain a; if we
had performed the repeated measurement only on the first subsys-
tem, irrespective of what happens on the other (irrespective of which
measurement is performed there) and, of course, vice versa. So it is nat-
ural to assume that independent measurements correspond to factorized
eigenstates

lar.az) = lay) ® |az) . (1.12)

As usual, the symbol & denotes the tensor product. Note, however, that
the innocent looking statement (1.12) is capable of peculiar physical
effects when it is combined with the superposition principle. The state
space of the total system is the tensor product of the subspaces. How-
ever, the superposition of two different states |a|) ® |ap) and |a’I ) ® |d))
will not factorize in general, producing an entangled state. The total



