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Preface to Part 1I/B

The present book is part of a comprehensive exposition of the main principles
of nonlinear functional analysis and its numerous applications to the natural
sciences and mathematical economics. The presentation is self-contained and
accessible to a broader audience of mathematicians, natural scientists, and
engineers. The material is organized as follows:

Part I: Fixed-point theorems.

Part II: Monotone operators.

Part III: Variational methods and optimization.
Parts 1V/V: Applications to mathematical physics.

Here, Part I1 is divided into two subvolumes:

Part II/A: Linear monotone operators.
Part I1/B: Nonlinear monotone operators.

These two subvolumes form a unit equipped with a uniform pagination. The
contents of Parts II/A and II/B and the basic strategies of our presentation
have been discussed in detail in the Preface to Part 1I/A. The present volume
contains the complete index material for Parts II/A and 1I/B.

For valuable hints I would like to thank Ina Letzel, Frank Benkert, Werner
Berndt, Giinther Berger, Hans-Peter Gittel, Matthias Giinther, Jirgen Herrler,
and Rainer Schumann. I would also like to thank Professor Stefan Hildebrandt
for his generous hospitality at the SFB in Bonn during several visits in the
last few years. In conclusion, I would like to thank Springer-Verlag for a
harmonious collaboration.

Leipzig Eberhard Zeidler
Summer 1989
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GENERALIZATION TO
NONLINEAR STATIONARY
PROBLEMS

When the answers to a mathematical problem cannot be found, then the reason
is frequently the fact that we have not recognized the general idea, from which
the given problem appears only as a single link in a chain of related problems.

David Hilbert (1900)

In the preceding chapters we studied linear monotone problems. In the
following chapters we want to generalize these results to nonlinear monotone
problems.

(i) In Chapters25 through 29 we investigate stationary problems, i.e., we study
operator equations of the form

Au=b, ue X,

together with applications to quasi-linear elliptic differential equations and
to Hammerstein integral equations.

In this connection we consider the following cases:

Lipschitz continuous, strongly monotone operators on H-spaces (Chap-
ter 25);

monotone coercive operators on B-spaces (Chapter 26);

pseudomonotone operators (Chapter 27);

maximal monotone operators (Chapter 32).

For example, strongly continuous perturbations of monotone continuous
operators are pseudomonotone. In Part I we considered the two fundamental
fixed-point principles of Banach and Schauder. Figure 25.1 shows that these
two principles also play a crucial role in the theory of monotone operators.

469



470 Generalization to Nonlinear Stationary Problems

fixed-point theorem fixed-point theorem ————  fixed-point

of Banach of Brouwer theorem
of Schauder

existence principle
for equations in RY

+ contractivity + convergence of the
trick Galerkin method
via monotonicity trick

‘, |

main theorem on main theorem on monotone
Lipschitz continuous, operators in B-spaces
strongly monotone (Theorem 26.A)

operators in H-spaces
(Theorem 25.B)

Figure 25.1

The special case of variational methods will be considered in Chapter 25.
In this connection, the solutions of the convex minimum problem

f(u) = min!, ue X,
are solutions of the monotone operator equation
f'wy=b, ue X,
which generalizes the classical Euler equation.

(ii) In Chapters 30 through 33 we consider nonstationary problems, i.e., we
study evolution equations of first and second order

u™ + Au = b, n=1,2,

together with applications to quasi-linear parabolic and hyperbolic
equations.

In (i) and (ii), the operator 4 is monotone or, more generally, pseudo-
monotone. Here, the notion of maximal monotone operators plays a funda-
mental role.

(iti) In Chapters 34 through 36 we investigate a general theory of discretiza-

tion methods together with applications to Galerkin methods (inner
approximation schemes) and difference methods (external approximation

schemes).

In this connection, the notion of A-proper operators is crucial.
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Basic Ideas of the Theory of Monotone Operators

Riemann has shown us that proofs are better achieved through ideas than

through long calculations.
David Hilbert (1897)

One can understand a mathematical statement, if one

(i) can use it,
(ii) has completely understood the proof, or
(iii) one can independently find the proof again at any time.

Only when one reaches the third step can one speak of understanding in a real

sense.
Aleksander Ostrowski (1951)

Male lovers sometimes lack experience before their fortieth year, and later on,
there is often a lack of opportunity. In the same way, younger mathematicians
often lack the knowledge, and older ones lack the ideas.

Wilhelm Blaschke (1942)

The theory of nonlinear monotone operators is based on only a few tricks.
For the convenience of the reader, we summarize these tricks here. This way,
we want to make the proofs of the main results as transparent as possible. In
the following Chapters 26 through 36, the items (1), (2), etc. below, will be
quoted as (25.1), (25.2), etc.

The theory of nonlinear monotone operators generalizes the following
elementary result. We consider the real equation

(E) F(u) = b, uel,
and assume that:

(i) The function F: R — R is monotone.
(ii) F is continuous.
(iii) F(u) » +oo0 as u » +o0.

Then, for each b € R, equation (E) has a solution. If F is strictly monotone,
then the solution is unique (cf. Fig. 25.2).

This classical existence theorem follows from the intermediate value
theorem of Bolzano, whereas the uniqueness statement is obvious.

In particular, if f: R — R is convex and C?, then F = f’ is monotone, and
(E) with b = 0 is the Euler equation to the minimum problem

(M) f(u) = min!, ue R

This observation is the key to the application of variational methods in the
theory of monotone operators. However, note that the general theory of
monotone operators concerns operator equations which are not necessarily
the Euler equations of extremal problems.



472 Generalization to Nonlinear Stationary Problems

Figure 25.2

We now want to generalize the result above to monotone operator equa-
tions of the form '

(E*) Au=b, uelX.
Suppose that:

(i*) The operator A: X — X* is monotone on the real reflexive B-space X,

1.e.,
{Au — Av,u —v> >0 forall u,veX.

(ii*) A is hemicontinuous, i.e., the map
t— (A(u + to),w)

is continuous on [0, 1] for all u, v, w € X.
(iii*) A is coercive, i.e.,

{Au,u) — 4o
) o0 flell
Then the main theorem on monotone operators (Theorem 26.A) tells us the
following: For each b € X*, equation (E*) has a solution.
By Theorem 32.H, this fundamental result remains true if we replace (iii*)
with the weaker condition that A is weakly coercive, ic.,

im |JAu| = co.

|2~
If, in addition, A4 is strictly monotone, i.e.,

{Au — Av,u — v) >0 forall u,veX withu#uv,

then the solution of (E¥) is unique.
The result for equation (E) above is a special case of this theorem. In this

connection, set X = R and
F(u) = Au.

Note that X* = R and
{Au — Av,u — v) = (F(u) — F(v))(u — v)



