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PREFACE

The three subjects examined in this volume are taken from phase-contrast
microscopy, the mathematics of vision, and the new field of information
geometry.

The need to image phase objects in microscopes has given rise to many
ingenious suggestions; the best known is that of Frits Zernike in the 1930s.
A recent addition involves the use of a spiral phase filter in the Fourier plane
of the instrument; this is the subject of the first chapter by S. Fiirhapter,
A. Jesacher, C. Maurer, S. Bernet, and M. Ritsch-Marte, who have explored
the technique in detail. Here, they explain how such a phase filter works and
give numerous examples of its value in practice. The presentation is extremely
clear and helpful and will, I am confident, help to bring the technique into
wider use.

This is followed by a chapter inspired by the theory of vision, by C.H. Roh-
rer and M. Wild. This begins with a presentation of “LULU” theory, where
L and U are operators made up of the max and min operators. The second
part is concerned with stack filters and their design, and includes sections
on mathematical morphology and lattice stack filters. This is a broad-ranging
article, and contains many speculations, as well as the formal theory.

The volume concludes with an account by H. Snoussi of information geom-
etry, a relatively new field. The attempts to employ it in information theory and
physics were made in the mid-1980s. Here, this information geometry is used
for selecting the best priors in Bayesian learning structures. The author shows
how this problem can be solved and makes a convincing case for using this
new tool in related areas. This lucid presentation of a new subject will surely
be much appreciated.

As always, I thank all the authors for contributing to the series and for the
trouble they have taken to make their material accessible to a wide readership.
Forthcoming contributions are listed in the following pages.

Peter W. Hawkes
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[. INTRODUCTION

The invention of the light microscope allowed a first glimpse into the world of
micron- and smaller-sized objects that are otherwise not resolvable with the
human eye. First microscopes used the brightfield mode, where a specimen is
illuminated and the transmitted or reflected light is imaged by a microscope

ISSN 1076-5670 Copyright 2007, Elsevier Inc.
DOL: 10.1016/S1076-5670(06)46001-8 All rights reserved.



2 FURHAPTER ET AL.

objective. This method still plays an important role in microscopy. Because
the human eye is unable to recognize phase changes, a brightfield microscope
is only suitable for specimens that show an amplitude contrast. An object
is called an amplitude object if it absorbs parts of the incoming light due
to pigments within the sample. The fact that the majority of the examined
biological samples consist largely of water leads to poor contrast from the
surrounding medium.

In fluorescence microscopy, biological cells are stained so that specific
parts can be examined. The labeling of cells is a complex process that needs
extensive preparation. The examiner must know in advance which parts of a
sample are to be imaged, and on this basis, a marker must be selected. In many
cases, the dyes used are harmful and destroy the sample. These shortcomings
led to the development of a variety of microscopy methods whose aim was
to enhance the contrast and to unveil parts of transparent specimens that are
not visible in brightfield mode. Established methods in optical microscopy
that solve this problem are, for instance, darkfield, phase contrast, differential
interference contrast, Hoffman contrast, or Dodt contrast imaging.

In order to enhance contrast in light microscopy, the origin of the contrast
must be understood (Born and Wolf, 1980). An excellent compendium that
describes the principles of contrast in microscopy is, for example, given
in Microscopy Primer (2006), http://micro.magnet.fsu.edu/primer/techniques/
contrast.html and a general overview of imaging methods for living samples is
given in Tadrous (2002) and Stephens and Allan (2003). When a microscopic
sample is illuminated (e.g., by a white light source), some of the light passes
through the sample without being absorbed or scattered. The remaining part of
the light is diffracted from the sample and acquires a phase shift in comparison
to the undiffracted light. The microscope objective projects all light beams
into the image plane, where the undiffracted light evolves to a plane wave.
The diffracted light focuses at different positions in the image plane, and there
interference with the plane wave occurs, resulting in an intensity image of the
sample.

Darkfield microscopy is one method to increase image contrast. There
the zeroth order of the illumination beam is blocked such that only light
diffracted, refracted, or reflected at the specimen is coupled into the micro-
scope objective, where it can contribute to the formation of the image. The
result is an illuminated object in front of a dark background. The sample
is illuminated by a hollow cone of light, which is blocked by a ring in the
darkfield objective, or the illumination light completely misses the collecting
lens of the objective (ultra-darkfield method). This method works well for
objects with low contrast and is suitable to enhance edges and contours.
Since the direct illumination beam is blocked, and thus intensity is lost, this
microscopy technique requires a bright light source.



SPIRAL PHASE MICROSCOPY 3

An object is called a phase object if it does not absorb light and only
modifies the phase of the incoming light field. The following microscope
techniques are based on the fact that they convert phase differences (Barone-
Nugent et al., 2002) into amplitude variations that are visible to the human
eye.

Phase contrast microscopy (Zernike, 1934; Zernike, 1935; Zernike, 1955;
Noda and Kawata, 1992; Barty et al., 1998; Paganin and Nugent, 1998;
Liang et al., 2000; Bellair er al., 2004; Paganin et al., 2004), which was
first introduced by Frits Zernike, images small differences in refractive index
or thickness variations between several parts of the cell. The original central
phase contrast technique is based on a filter that is placed in a Fourier plane
of the imaging pathway, creating a phase difference between the diffracted
and undiffracted wavefront. For small phase variations, Zernike could show
(Zernike, 1942a; Zernike, 1942b) that there exists a difference of a quarter
wavelength between the diffracted and the undiffracted light field in a phase
sample. This phase variation cannot be seen by the human eye, which is
sensitive only to intensities. By shifting the phase of the undiffracted light by
another quarter wavelength, these phase variations on the sample can be trans-
formed into amplitude variations in the image plane. If the resulting phase
shift between the diffracted and the undiffracted light is half a wavelength,
both light fields interfere destructively, and the method is called positive phase
contrast. The specimen appears dark against a bright background. Conversely,
if the diffracted and undiffracted light are in phase after the phase filter, the
method is called negative phase contrast. The resulting images have bright
specimen details on a dark background. The success of his method earned
Zernike the Nobel Prize in Physics in 1953. An advantage of this method is
that living samples can be examined. As a disadvantage, “halo effects” (i.e.,
bright areas around dark objects or dark areas around bright objects) appear
when thicker probes are analyzed.

Differential interference contrast (DIC) was introduced by Georges No-
marski (Nomarski, 1955; Padawer, 1968; Allen et al., 1969; Pluta, 1989;
Cogswell et al., 1997; Van Munster et al., 1997; Preza, 2000; Franz and Kross,
2001; Arnison et al., 2004) and utilizes phase gradients in the sample for
contrast. Linearly polarized light is passed through a first modified Wollaston
(or Nomarski) prism, which splits the light into two parts with a 90-degree
difference between their polarizations. Behind the Wollaston prism, the two
rays have a small shear in their directions, less than the optical resolution of
the microscope. After passing the condenser, the light traverses the sample,
and differences in refractive index or thickness affect each beam differently.
Subsequently, the two beams are collected by the objective, recombined by
a second Wollaston prism, and finally interfere behind a second polarizer.
This procedure detects the phase difference between the sheared image



