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Preface

This volume of Current Topics in Developmental Biology showcases an
exciting array of topics in our field, from the protein response to DNA
damage, to the controversy of mammalian taxonomy, to the role of
antisense transcription in X inactivation, to the disposal of apoptotic cells,
to actin filament formation, to longevity in dwarf mouse strains. For the
developmental biology student seeking an exciting niche to study, this
volume highlights a wealth of opportunity.

Early Events in the DNA Damage Response by Irene Ward and Junjie
Chen of the Mayo Clinic explores the proteins that respond to double-
strand breaks and replication arrest in DNA, and reveals what is becoming
an increasingly complex picture of how these molecules identify and mediate
DNA damage, which may lead to insights to and interventions for cancer.

In Afrotherian Origins and Interrelationships: New Views and Future
Prospects by Terence Robinson of the University of Stellenbosch and Erik
Seiffert of Duke University, the authors consider the controversial
mammalian clade Afrotheria, a diverse collection including the mighty
elephant, the sea-going manatee, and the aardvark. Do these mammals truly
have the same ancestral phyla in common? While genetically it would
appear so, the morphological data is confusing. The authors encourage both
more sophisticated molecular testing and continued study of the fossil
record to resolve this question.

The Role of Antisense Transcription in the Regulation of X-Inactivation
by Claire Rougeulle and Philip Avner of Institut Pasteur is a sweeping
review of our present understanding of how the group of Tsix antisense
transcripts contribute to imprinted and random inactivation. As our
knowledge of the function of non-coding RNAs increases, the authors
counsel that we reconsider labeling such portions of the genome as “‘junk
DNA.”

The Genetics of Hiding the Corpse: Engulfment and Degradation of
Apoptotic Cells in C. elegans and D. melanogaster by Zheng Zhou, Paolo
Manghas and Xiaomeng Yu of Baylor examines the proteins and receptors
that make dying cells recognizable, and those responsible for initiating
disposal by neighbor cells, with important implications regarding these
processes in mammals, since phagocytosis impacts such mechanisms as
inflammation and immune response.

In Beginning and Ending an Actin Filament: Control at the Barbed End
by Sally Zigmond of the University of Pennsylvania describes the
mechanisms whereby new filaments are formed and how they are elongated,
and how filaments are capped. A suite of proteins acting as a complex are

xi



xii Preface

responsible for this interplay, similar to the protein interplay inherent in cell
migration and, probably, in other cellular dynamics.

Finally, in Life Extension in the Dwarf Mouse by Andrzej Bartke of
Southern Illinois University and Holly Brown-Borg of the University of
North Dakota, the authors consider the common factors contributing to
longevity in several lines of dwarf mice. In many, the reduced synthesis of
insulin-like growth factor seems to result in reduced cellular aging via
oxidative stress, probably from reduced metabolic function. Intriguingly,
animals subject to caloric restriction display a similar heightened response to
oxidative stress, including a lower incidence of cancer.

This volume has benefited from the ongoing cooperation of a team of
participants who are jointly responsible for the content and quality of its
material. The authors deserve the full credit for their success in covering
their subjects in depth yet with clarity, and for challenging the reader to
think about these topics in new ways. The members of the Editorial Board
are thanked for their suggestions of topics and authors. I also thank Leah
Kauffman for her fabulous editorial insight and Anna Vacca for her exem-
plary administrative support. Finally, we are grateful to everyone at the
Pittsburgh Development Center of Magee-Womens Research Institute here
at the University of Pittsburgh School of Medicine for providing intellectual
and infrastructural support for Current Topics in Developmental Biology.

Jerry Schatten
Pittsburgh Development Center, Pennsylvania
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The ability to sense DNA damage and activate response pathways that
coordinate cell cycle progression and DNA repair is essential for the
maintenance of genomic integrity and the viability of organisms. During
the last couple of years, several proteins have been identified that participate
very early in the DNA damage response. Here we review the current
understanding of the mechanisms by which mammalian cells detect DNA
lesions, especially double-strand breaks, and mediate the signal to
downstream transducers. © 2004, Eisevier Inc.

I. Introduction

DNA constantly encounters potentially deleterious assaults from both envi-
ronmental and endogenous sources. To protect the integrity of their DNA,
cells have evolved a variety of response pathways that initiate repair and
carefully coordinate it with DNA transcription, replication, and cell-cycle
progression. The main repair strategies are direct reversal of lesions, excision
of damaged DNA, and rejoining of DNA breaks (Table I).

Direct repair of certain alkylation adducts or UV-induced photolesions
by specialized single enzymes is the simplest and perhaps oldest repair
Current Topics in Developmental Biology, Vol. 63

Copyright 2004, Elsevier Inc. All rights reserved. 1
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2 Ward and Chen

Table I Overview of the Major DNA Repair Mechanisms

Main inducer Type of damage Repair pathway
Ultraviolet light CPDs, 6-4PPs Direct repair
(photoreactivation)

Ultraviolet light CPDs, 6-4PPs Nucleotide excision repair

certain chemotherapeutic intrastrand adducts (NER)

drugs or environmental or other bulky

toxins (e.g., cisplatin or adducts

PAHs)
Oxygen radicals and other Non-bulky base Base excision repair (BER)

products from cellular modifications

metabolism (oxidation,
hydrolysis, methylation)
Errant replication Mispaired bases, Mismatch repair (MMR)
insertions, deletions
Bistranded BER-induced Double-strand breaks =~ Non-homologous end-joining (NHEJ)

SSBs, recombination, (DSBs) and/or homologous
replication fork collapse, recombination (HR)
ionizing radiation

Cisplatin Interstrand crosslinks

Abbreviations: CPDs, cyclobutane pyrimidine dimers; 6-4PPs, 6-4 photoproducts; PAHs,
polycyclic aromatic hydrocarbons; SSBs, single-strand breaks.

mechanism. It is conserved from bacteria to vertebrates, although humans
seem to lack photolyases, the enzymes that reverse UV damage. UV lesions in
humans are solely targeted by the nucleotide excision repair (NER) pathway.
This versatile pathway also repairs various other bulky, helix-distorting
lesions that arise, for instance, from exposure to genotoxic compounds such
as polycyclic aromatic hydrocarbons (PAH). NER is a multistep process that
comprises recognition of disrupted base pairing followed by unwinding of the
DNA helix around the lesion and dual incision. The damaged oligonucleotide
patch is subsequently excised, and the remaining gap is filled by regular DNA
replication using the intact complementary strand as a template. A subpath-
way of NER, termed transcription-coupled repair (TCR) (versus global
genomic repair [GGR]), targets damage that blocks DNA transcription and
involves displacement of the stalled RNA polymerase (reviewed in Cleaver
et al., 2001). In addition, cells can use special polymerases to read through a
lesion that blocks the normal replication machinery, although this aberrant
translesion synthesis often comes at the expense of inserting point mutations
(reviewed in Goodman and Tippin, 2000).

Another excision repair pathway, mismatch repair (MMR), targets mis-
paired bases and nucleotide insertion/deletion loops that arise during errant
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DNA replication. Strand discrimination in eukaryotic cells is not yet fully
understood but is thought to occur by contact of MMR proteins with the
replication machinery (reviewed in Schofield and Hsieh, 2003).

Non-bulky base modifications, which are primarily caused by the normal
cellular metabolism processes such as oxidation, hydrolysis, and nonenzy-
matic methylation as well as by the intrinsic molecular instability of the
DNA itself, are mainly removed by the base excision repair pathway (BER).
In BER, specific DNA glycosylases recognize and excise the modified base.
The resulting abasic sugar is cleaved by an endonuclease. DNA pol3 subse-
quently removes the 5'-terminal deoxyribose-phosphate residue and fills the
single-nucleotide gap. The remaining nick is then sealed by a DNA ligase
(reviewed in Memisoglu and Samson, 2000).

If single base lesions occur closely spaced on opposite strands, processing
by BER can give raise to double-strand breaks (DSBs). Such bistranded
damage clusters can form as a consequence of endogenous base damage or
result from free radicals generated during radiolysis of water upon exposure
of cells to ionizing radiation (IR) (Sutherland ez al., 2003; Wallace, 1998). IR
can also introduce DSBs directly by depositing energy within the DNA and
causing multiple breaks. Other important sources of DSB include HO endo-
nuclease-induced DSBs that start mating type switch in yeast (Haber, 1992)
and Spoll transesterase-induced DSBs that initiate meiotic recombination
in yeast and mammals (Mahadevaiah et al., 2001; Sun et al., 1989). DSBs are
also introduced during the process of V(D)J recombination and class switch
recombination (CSR), which is part of the normal development of the
immune repertoire in B and T lymphocytes (Gellert ez al., 1992; Honjo
et al., 2002). Moreover, DSBs arise frequently during DNA replication when
replication forks encounter single-strand breaks and collapse (Thompson
and Schild, 2002).

DSBs are more challenging to repair than other DNA lesions and are
considered the most toxic type of DNA damage. If left unrepaired or
repaired improperly, they cause chromosomal aberrations such as transloca-
tions, amplifications, or deletions, which may be lethal or result in oncogenic
transformation (Difilippantonio et al., 2002; Zhu et al., 2002). The two
major pathways of DNA DSB repair are homologous recombination
(HR), a highly accurate process that requires large regions of homologous
sequence as a template, and nonhomologous DNA endjoining (NHEJ),
which simply joins broken ends together, thereby often generating deletions,
insertions, or base pair substitutions. If substantial regions of homology
flank a DSB, cells can use a third repair pathway termed single-strand
annealing (SSA), which involves the interaction of the two repeats and
results in the loss of one flanking region plus the intervening DNA
(Lin et al., 1984). Similarly, very small, so-called microhomology regions
can be used by a subpathway of NHEJ, which has also been designated
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microhomology-driven SSA (Gottlich et al., 1998), direct-repeat end-joining
(Thacker et al., 1999), and error-prone NHEJ (Pfeiffer ez al., 2000).

In diploid yeast, DNA DSBs seem to be repaired almost exclusively
through high-fidelity HR. Mammalian cells use recombinational repair as
well (Liang et al., 1998), although NHEJ makes an important contribution
to DSB repair, especially during the G0 and G1 phases of the cell cycle when
no sister chromatid is available (Lee et al., 1997; Takata et al., 1998). In
addition, the relative contribution of HR and NHEJ appears to change with
the developmental stage of a cell, with HR being the major repair pathway in
embryonic cells, while NHEJ dominates in differentiated somatic cells
(Essers et al., 2000).

Repair of a DSB by HR involves 5 — 3’ resection of the broken DNA
ends followed by identification and invasion of the homologous sequence at
the sister chromatid or homologous chromosome. The 3’ overhangs of the
invading strands then serve as primers for DNA synthesis, using the intact
strand as a template. In contrast, NHEJ comprises simply the alignment of
DSBs, which may have to be modified by nucleases and/or polymerases to
obtain compatible ends that can then be ligated.

To allow time for repair of the various types of DNA lesions and to
prevent damage from being passed onto daughter cells, cells activate so-
called checkpoint signaling pathways that sense DNA lesions, amplify
the signal, and transiently arrest or slow cell cycle progression. In addition,
checkpoint pathways induce transcriptional programs and enhance DNA
repair pathways. Although over the past decades much progress has been
made in dissecting the different DNA damage response pathways, less
is known about the initial events that trigger cell cycle checkpoints and
stimulate DNA repair. In this chapter, we focus on the proteins that partici-
pate early in the response to DNA DSBs (e.g., ATM, DNA-PK, MRN
complex, H2AX, MDCI1, 53BP1, Chk2) and/or replication arrest (e.g.,
ATR, Radl7, 9-1-1 complex, Chkl) and discuss their role in safeguarding
genome integrity.

Il. Formation of Multiprotein Complexes

The dynamic formation of large multiprotein complexes at the region sur-
rounding DNA lesions provided important insight into the early events in
response to DNA damage. Among the first proteins that relocalize to these
nuclear foci are MDCI/NFBDI1, 53BP1, and the Mrell-Rad50-NBSI
(MRN) complex (Fig. 1). Induction of DNA DSBs in defined subnuclear
volumes using ultrasoft X rays demonstrated that these foci indeed form at
sites of DNA strand breaks (Nelms er al., 1998). Moreover, immunofluor-
escence analyses showed that the proteins colocalize extensively with foci
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Figure 1 Formation of multiprotein complexes at the sites of DNA double-strand breaks.
Exposure of cells to ionizing radiation results in the rapid recruitment of numerous proteins to
the sites of DNA lesions. The ATM (ataxia telangiectasia mutated) kinase, which is central to
this response, initiates a cascade of phosphorylation events (P) that activate cell cycle
checkpoint pathways and, if necessary, apoptosis. How ATM participates in DNA repair is not
well defined. In contrast, the related DNA-PK kinase, consisting of the DNA-PKcs and KU70/
Ku80 subunits, attaches to DNA ends and is essential for nonhomologous DNA end-joining.

formed by phsophorylated H2AX (y-H2AX), a variant of histone H2A
that is randomly incorporated in approximately 20-30% of nucleosomes
(Rogakou et al., 1998). H2AX phosphorylation is damage dependent, and
experiments using a pulsed microbeam laser to introduce DNA double-
strand breaks into specific partial nuclear volumes of cells revealed that
H2AX phosphorylation is confined to megabase areas surrounding strand
breaks (Rogakou et al., 1999). Phosphorylation of H2AX in response to IR
is mediated by ATM (ataxia telangiectasia mutated) (Burma et al., 2001),
while the related ATR (ATM and Rad3-related) kinase phosphorylates
H2AX in response to replication arrest (Ward and Chen, 2001). ATM and
ATR have also been shown to phosphorylate numerous other proteins
recruited to sites of DNA damage, including MDCI/NFBDI, 53BPl1,
NBS1 and members of the Rad9-Radl-Husl (9-1-1) complex, and are
thought to be key regulators in the DNA damage response.
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A. ATM and ATR

ATM and ATR are conserved serine-threonine kinases characterized by a C-
terminal catalytic motif containing a phosphatidylinositol 3-kinase domain.
The gene that encodes ATM is mutated in the severe auotosomal recessive
disorder ataxia telangiectasia (A-T). A-T patients suffer from progressive
cerebellar degeneration, immunodeficiency, growth retardation, hypogonad-
ism, chromosomal instability, and cancer predisposition (Gatti et al., 2001).
At the cellular level, A-T cells show hypersensitivity to IR, radio-resistant
DNA synthesis (RDS), and a high frequency of chromosome aberrations
(Abraham, 2001; Shiloh, 2003). ATR deficiency is even more severe, result-
ing in early embryonic lethality in mice (Brown and Baltimore, 2000). Partial
loss of ATR activity has been associated with Seckel syndrome, a rare
inherited disorder characterized by intrauterine growth retardation and
microcephaly (O’Driscoll ef al., 2003).

ATM is primarily activated in response to DSBs, while ATR reacts to a
wider range of lesions, including stalled replication forks. Both proteins are
implicated in the sensing of DNA damage and/or the transducing of the
damage signal and have been shown to associate with DNA in vitro (Smith
et al., 1999; Suzuki et al., 1999; Unsal-Kacmaz et al., 2002). Moreover, ATR
undergoes dramatic relocation to sites of stalled replication forks in response
to replication stress (Tibbetts er al., 2000). Similarly, detergent extraction
revealed rapid changes in the subcellular localization of ATM in response to
radiomimetic agents, suggesting that a fraction of the ATM pool associates
with sites of DNA DSBs (Andegeko er al., 2001). It was therefore thought
that both ATM and ATR might be activated through interaction with
DNA or DNA-associated sensing units. However, a study by Bakkenist
and Kastan (2003) showed that ATM exists as an inactive dimer or multimer
in undamaged cells with the kinase domain of each molecule bound to the
FAT (FRAP/ATM/TRRAP) domain of another ATM molecule. DSB-
specific alterations in the higher order chromatin structure or exposure of
cells to hypotonic stress or chromatin-modifying agents result in the dissoci-
ation of the ATM molecules. Dimer dissociation is induced independent of
direct DNA binding by intermolecular autophosphorylation of ATM on Ser
1981 and results in monomers with accessible kinase domains that are free to
migrate and phosphorylate substrates. Their finding is supported by an in
vitro study showing that ATM can be activated by ATP in the absence of
DNA by a mechanism involving autophosphorylation (Kozlov et al., 2003).

It remains to be seen whether ATR becomes activated by a similar
mechanism. The in vitro kinase activity of ATR seems not to increase after
exposure of cells to various genotoxic agents (Abraham, 2001), although
kinase-dead ATR failed to relocalize in response to DNA damage (Barr
et al., 2003). In vitro studies suggest that ATR-interacting protein (ATRIP),



