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=i PREFACE

As the earlier editions were, this book is intended as a text for an introductory course
in algebraic structures (groups, rings, fields, and so forth). Such a course is often used
to bridge the gap from manipulative to theoretical mathematics and to help prepare
secondary mathematics teachers for their careers. Some flexibility is provided by in-
cluding more material than would normally be taught in one course, and a dependency
diagram of the chapters/sections (Figure P.1) is included at the end of this preface.
Several sections, including two new ones on applications, are marked ‘“‘optional” and
may be skipped by instructors who prefer to spend more time on later topics.

When we approached the preparation of this fourth edition, two thoughts were
foremost in our minds. The first thought was one of sincere appreciation to the users
of previous editions, and the second was one of concern as to how we might improve
the book. These two thoughts came together to give us a goal for this edition: to make
this text more user-friendly.

Our efforts toward that goal led to the following changes from the third edition.
This list reflects the suggestions of users and reviewers of that edition, as well as our
ideas as to how we might incorporate their suggestions.

P> Introduction to Coding Theory (Section 2.7) is an optional new section on the
application of modular arithmetic to coding theory. This material includes descrip-
tions of codes used in UPC symbols, passport numbers, bank numbers, and ISBN
numbers.

P> Permutation Groups in Science and Art (Section 4.3) is an optional new section

that presents some of the more important applications of permutation groups in the

natural sciences and the arts. The four types of symmetries (rotations, reflections,
translations, and glide reflections) for plane figures are examined, as well as groups
of symmetries of unbounded sets.

Descriptive labels and titles have been placed on definitions and theorems to

indicate their content and relevance.

Strategy boxes have been added that give guidance and explanation about tech-

niques of proof. This feature forms a component of the bridge that enables students

to become more proficient in their proof construction skills.

P> Symbolic marginal notes such as “(p A\ ¢) = r” and “~ p & (~ g A\ ~r)” have
been added to help students analyze the logic in the proofs of theorems without
interrupting the natural flow of the proof.

P> A new reference system has been installed that provides guideposts to continua-
tions and interconnections of exercises throughout the text. As an example, consider
Exercise 23 in the exercises for Section 4.4. The marginal notation “Sec. 3.1,
#26 > indicates that this exercise is connected to Exercise 26 in the earlier
Section 3.1. The marginal notation *“Sec. 4.5, #7<<" indicates that this exercise has
a continuation in Exercise 7 in the later Section 4.5.
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Preface v

P> New or rewritten material appears in 18 sections and 22 exercise sets of this
edition.

P The topic of homomorphisms has been moved to Section 3.5, immediately follow-
ing the section on isomorphisms.

P> A modest increase in the number of exercises requiring proofs has been made, and
we have done some minor reorganization in the exercise sets.

P> An updated bibliography includes the excellent new abstract algebra texts that
have appeared in recent years.

The following features, many of which contribute to user-friendliness, are re-
tained from the third edition:
An appendix on the basics of logic and methods of proof

A biographical sketch of a great mathematician whose contributions are relevant
to that material concludes each chapter

Gradual introduction and development of concepts, proceeding from the sim-
plest structures to the more complex

An abundance of examples, designed to develop the student’s intuition

Enough exercises to allow instructors to make different assignments of approxi-
mately the same difficulty

Exercise sets designed to develop the student’s maturity and ability to construct
proofs, with many problems that are elementary or of a computational nature

A summary of key words and phrases at the end of each chapter

A list of special notations used in the book, on the front endpapers

VYV V VYY vV VY

Group tables for the most common examples, on the back endpapers

Groups appear in the text before rings. The standard topics in elementary group
theory are included, and the last two sections in Chapter 4 provide an optional sample
of more advanced work in finite abelian groups.

Several users of the text have inquired as to what material we teach in our courses.
Our basic goal in a single course is to reach the end of Section 5.3 (The Field of
Quotients of an Integral Domain), omitting the last two sections of Chapter 4 along the
way. We would also omit the optional new sections on applications and optional Section
2.1 (Postulates for the Integers) if class meetings are in short supply. The sections on
applications naturally lend themselves well to outside student projects involving addi-
tional writing and/or library research.

The problems in an exercise set are, for the most part, arranged in order of
difficulty, with easier problems first, but exceptions to this arrangement occur if it
violates logical order. If one problem is needed or useful in another problem, the more
basic problem appears first. When teaching from this text, both authors use a ground
rule that any previous result, including prior exercises, may be used in constructing a
proof. Whether to adopt this ground rule is, of course, a completely optional choice of
the instructor.

Some users have indicated that they omit Chapter 7 (Real and Complex Num-
bers) because their students are already familiar with it. Others cover Chapter 8
(Polynomials) before Chapter 7. These and other options are diagrammed in Figure P.1
at the end of this preface.
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The treatment of the set Z, of congruence classes modulo 7 is a unique feature of
this text, in that it threads throughout most of the book. The first contact with Z, is
early in Chapter 2, where it appears as a set of equivalence classes. Binary operations
of addition and multiplication are defined in Z,, at a later point in that chapter. Both the
additive and multiplicative structures are drawn upon for examples in Chapters 3 and
4. The development of Z, continues in Chapter 5, where it appears in its familiar
context as a ring. This development culminates in Chapter 6 with the final description
of Z, as a quotient ring of the integers by the principal ideal (n).

A minimal amount of mathematical maturity is assumed in the text; a major goal
is to develop mathematical maturity. The material is presented in a theorem-proof
format, with definitions and major results easily located with a user-friendly format.
The treatment is rigorous and self-contained, in keeping with the objectives of training
the student in the techniques of algebra and providing a bridge to higher-level mathe-
matics courses.
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FUNDAMENTALS

INTRODUCTION

This chapter presents the fundamental concepts of
set, mapping, binary operation, and relation. It also
contains a section on matrices, which will serve as a
basis for examples and exercises from time to time in
the remainder of the text. Much of the material in this
chapter may be familiar from earlier courses. If that
is the case, appropriate omissions can be made to
expedite the study of later topics.



2  CHAPTER I

Fundamentals

SETS

Abstract algebra had its beginnings in attempts to solve mathematical problems such as
the solution of polynomial equations by radicals and geometric constructions with
straightedge and compass. From the solutions of specific problems, general techniques
evolved that could be used to solve problems of the same type, and treatments were
generalized to deal with whole classes of problems rather than particular ones.

In our study of abstract algebra, we shall make use of our knowledge of the
various number systems. At the same time, in many cases we wish to examine how
certain properties are consequences of other known properties. This sort of examina-
tion deepens our understanding of the system. As we proceed, we shall be careful to
distinguish between the properties we have assumed and made available for use, and
those that must be deduced from these properties. We must accept without definition
some terms that are basic objects in our mathematical systems. Initial assumptions
about each system are formulated using these undefined terms.

One such undefined term is set. We think of a set as a collection of objects about
which it is possible to determine whether or not a particular object is a member of the
set. Sets are usually denoted by capital letters and are sometimes described by a list of
their elements, as illustrated in the following examples.

Example | We write

A ={0,1,2,3}
to indicate that the set A contains the elements 0, 1, 2, 3, and no other elements. The
notation {0, 1, 2, 3} is read as ‘“‘the set with elements 0, 1, 2, and 3.” ]
Example 2 The set B, consisting of all the nonnegative integers, is written

B=1{0,1,2,3;...}.

The three dots . . . , called an ellipsis, mean that the pattern established before the dots
continues indefinitely. The notation {0, 1, 2, 3, .. .} is read as “the set with elements 0,
1,2,3,and soon.” ]

As in Examples 1 and 2, it is customary to avoid repetition when listing the
elements of a set. Another way of describing sets is called set-builder notation. Set-
builder notation uses braces to enclose a property that is the qualification for member-
ship in the set.

Example 3 The set B in Example 2 can be described using set-builder notation as
B = {x|xis a nonnegative integer}.

The vertical slash is shorthand for “‘such that,” and we read ‘B is the set of all x such
that x is a nonnegative integer.” ]
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There is also a shorthand notation for ‘“‘is an element of.” We write “x €A™ to
mean “x is an element of the set A.”” We write “x ¢ A” to mean “x is not an element
of the set A.”” For the set A in Example 1, we can write

2eA and 7¢ A.

SUBSET

Let A and B be sets. Then A is called a subset of B if and only if every element of
A is an element of B. Either of the notations A C B or B D A indicates that A is a
subset of B.

The notation A C B is read ““A is a subset of B” or ‘“‘A is contained in B.” Also,
B D Aisread as “B contains A.” The symbol € is reserved for elements, whereas the
symbol C is reserved for subsets.

Example 4 We write

aela,b,c,d} or {a}C{a,b,c,d}.
However,

aC{ab,c,d} and {a}e{a,b,c d}

are both incorrect uses of set notation. ]

EQUALITY OF SETS

Two sets are equal if and only if they contain exactly the same elements.

The sets A and B are equal, and we write A = B, if each member of A is also a
member of B, and if each member of B is also a member of A. Typically, a proof that
two sets are equal is presented in two parts. The first shows that A C B, and the second
that B C A. We then conclude that A = B. We shall have an example of this type of
proof shortly.

PROPER SUBSET

If A and B are sets, then A is a proper subset of B if and only if A C B and
A # B.

We sometimes write A C B to denote that A is a proper subset of B.

Example 5 The following statements illustrate the notation for proper subsets and
equality of sets.

{1,2,4} C {1,2,3,4,5} {a,c} = {c,a} ]
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CHAPTER | Fundamentals

There are two basic operations, union and intersection, that are used to combine
sets. These operations are defined as follows.

Definition 1.4 UNION, INTERSECTION

If A and B are sets, the union of A and B is the set A U B (read “A union B”’),
given by

AU B = {xlxeAorxeB}.
The intersection of A and B is the set A N B (read “A intersection B’"), given by
ANB={xlxeAand xeB}.

The union of two sets A and B is the set whose elements are either in A or in B
or in both A and B. The intersection of sets A and B is the set of those elements common
to both A and B.

Example 6 Suppose A = {2,4,6} and B = {4,5,6,7}. Then
AUB=({2,4,56,7}
and

ANB= {46} n

It is easy to find sets that have no elements at all in common. For example, the sets
A={l1,—-1} and B={0,2,3}

have no elements in common. Hence, there are no elements in their intersection, A N B,
and we say that the intersection is empty. Thus, it is logical to introduce the empty set.

Definition 1.5 EMPTY SET, DISJOINT SETS

The empty set is the set that has no elements, and the empty set is denoted by
@D or { }. Two sets A and B are called disjoint if and only if A N B = .

The sets {1, —1} and {0, 2, 3} are disjoint, since
{1,-1} N {0,2,3} = &.

There is only one empty set &, and & is a subset of every set. For a set A with
n elements (n a nonnegative integer), we can write out all the subsets of A. For
example, if

A ={a, b, c},
then the subsets of A are

9, {a}, {b}, {c}, {a, b}, {a, ¢}, {b, ¢}, A.
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POWER SET

For any set A, the power set of A, denoted by P(A), is the set of all subsets of A
and is written

PA) = {X|X CA).

Example 7 For A = {a, b, c}, the power set of A is

PA) = {D. {a}, {b}. {c}, {a, b}, {a, c}, {b, c},A}. L

It is often helpful to draw a picture or diagram of the sets under discussion.
When we do this, we assume that all the sets we are dealing with, along with all possible
unions and intersections of those sets, are subsets of some universal set, denoted by U.
In Figure 1.1, we let two overlapping circles represent the two sets A and B. The sets A
and B are subsets of the universal set U, represented by the rectangle. Hence, the circles
are contained in the rectangle. The intersection of A and B, A N B, is the crosshatched
region where the two circles overlap. This type of pictorial representation is called a
Venn diagram.

Another special subset is defined next.

COMPLEMENT

For arbitrary subsets A and B of the universal set U, the complement of B in A is

A—B={xeUl|xeAandx¢ B}.

The special notation A" is reserved for a particular complement, U — A:
A'=U—-A={xeUl|xe A}.

We read A’ as simply “‘the complement of A” rather than as “the complement of A
in U.”



