A

S QNO&!W\ N

U SMENAS N

& SRS NN

* ANENY INNENISY BN
 AESOENY INUNNSDY BENRYS

SN N AN TN O NN B
im'iﬁcl INRBNNEY wREMAROR
ISRENNEY WENRONR

ADVANCED
COMPUTER
ARCHITECTURE

A Systems Design Approach

RICHARD Y. KAIN

Department of Electrical Engineering
University of Minnesota

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Kain, Richard Y.
Advanced computer architecture : a systems design approach

Richard Y. Kain

. cm.
Inclsdes bibliological references and index.
ISBN: 0-13-007741-0 (hard cover)

1. Computer architecture I. Title.
QA76.9.A73K363 1996

004.2'2--dc20 95-18657
CIP

Acquisitions editor: Alan Apt

Production editor: Bayani Mendoza deLeon
Copy editor: Peter Zurita

Cover designer: Bruce Kenselaar

Buyer: Donna Sullivan

Editorial assistant: Shirley McGuire

= © 1996 by Prentice-Hall, Inc.
A Simon & Schuster Company
= Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages
in connection with, or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America

109 87 65432
cover photograph copyright 1992 by Richard Y. Kain

ISBN 0-13-00774L-0

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Litda., Rio de Janeiro

PREFACE

The man who sees two or three generations

is like one who sits in the conjurer’s booth at a fair,
and sees the tricks two or three times.

They are meant to be seen only once.

— Schopenhauer

Often tricks are repeated over generations, but are still meant to surprise the
audience, according to Schopenhauer. It is instructive to view this from the other
side—the magician must learn basic tricks before performing and astounding an
audience. The history of computer design follows this pattern: Architectures
have progressed through several “generations,” usually defined in terms of the
implementation technology, and many “tricks” have been rediscovered and re-
used. Many techniques have been reinvented, because the old ones have been
forgotten. I believe that although designers face different trade-offs in different
technologies, they work with the same basic bag of tricks to conjure up new
architectures.

In this book, I describe many architectural tricks and position them within
a useful structure. The structure should clarify the similarities and differences
between architectures by exhibiting not only the basic tricks and techniques, but
also the relationships between software and hardware levels of system imple-
mentation and operation.

As designers ponder basic design trade-offs and seek good solutions to
their design/challenges, they should study the requirements and design options
for the complete system. The system will include many modules arranged in

Xix

XX Preface

levels, ranging from the processor outward to operating systems, programming
languages, and application structures. For a number of years, it has been obvious
that the design questions, design options, and approaches to the design ques-
tions have many similarities across the levels of the system. By being aware of
the needs of the application, programming language structure, and operating
system functions when designing the processor architecture, a design that sup-
ports a more efficient system might be developed.

Historical Designs. The book includes examples from a number of pro-
gramming languages, operating systems, and processor designs, some new and
some old. By exposing you to diverse examples, I hope to convince you that
many design options are feasible, at least in the context of specific design envi-
ronments. I also show you details needed to complete the designs, or I challenge
you to find the details as you work through the problems.

Even though an arbitrary combination of design choices might not produce
an effective system, we should consider and remember design techniques devel-
oped by our predecessors, because their techniques might be useful in many
situations.

Many old design strategies are revived or reinvented as technology
evolves and the design environment changes. We should not let the good de-
signs of the past be forgotten, because once forgotten, it is a waste of time and
energy to reinvent them later. And then they will have to be debugged all over
again!

Why Did 1 Choose this Approach? Klapp [KLAP86] suggests that one con-
tributor to the current “lag in meaning” is that people do not have enough time to
ponder recent ideas. Time for “wondering” is time for finding new connections
and relationships. The rapid introduction of new computer systems, program-
ming languages, and myriad applications keeps designers and implementers
busy meeting pressing deadlines. This may leave them with insufficient time to
wonder about and ponder the overall scene.

My musings about how to approach architectural issues resulted in this
book; this is the current version of my ongoing quest for a coherent personation
of computer design issues. I am trying to join issues and techniques from soft-
ware and hardware levels. I believe that better system designs can be achieved
when designers start with a clear conception of the design problem and are fa-
miliar with the approaches used by their predecessors to solve similar problems
at all levels of the overall system.

I have chosen to present a coherent approach to computer system design
that encompasses many, if not most, of the design problems and solution op-
tions, starting from the structures of contemporary programming languages and
operating systems, extending inward to the processor’s architecture and its im-
plementation. Many common design issues and certain approaches and solution

Preface XXi

options could be applied at several levels of system implementation. To empha-
size the commonalty and to impose structure on the presentation, I tend to place
general principles and design approaches at the beginning of each chapter and
then progress in a top-down manner (from programming languages toward the
processor and its implementation), using examples from actual programming
languages, operating systems, and processors. In this manner, I detail and illus-
trate the problems and the designs that solve those problems.

There is considerable overlap between the material in some sections of this
book and parts of certain computer science courses, particularly courses on the
structure of high-level languages and operating systems, with a pinch of data-
base topics thrown in. A reader who has studied these topics before might skim
over these sections to see how I present the material (which does not always con-
form to the conventional terminology used in the specialized field). Although
these topics might not be considered to be architectural topics by some purists,
they are connected with processor architectures and with features that lead to
high performance in real applications environments. Recall that the ultimate pur-
pose of computer science is to understand how to develop algorithms and data
structures that use computing machines to effectively solve large, difficult prob-
lems. Therefore, techniques that are useful in computer science have to be imple-
mented somewhere within the total system. Thus, one should look with an eye
toward how they can be supported within a system’s architecture. The ultimate
outcome of this thinking might be a software solution, but it might suggest direct
processor support for features that otherwise might not be considered impor-
tant. For example, if one were taking a view that functional necessity (in a
mathematical sense) is the only criterion for including a feature within a proces-
sor, one would have difficulty implementing a secure system.

This book is a major rewrite that started from my earlier two-volume book
[KAINB89]. I changed the emphasis in programming examples from Ada to C++
and from the MC68020 processor to RISC processors. I expanded and clarified
examples and explanations and added more examples from contemporary sys-
tems. I added more details about sharing and coordination between cooperating
processes. I reduced the explanations of many introductory topics and rely now
on the reader’s background with programming in C++ or a similar language and
with the design of RISC processors, at the level of Patterson and Hennessy
[PATT93]. Some background material and some specialized topics have been
moved into appendices. The fact that some material has moved to an appendix
does not reduce its importance; it merely suggests that it could be skipped by a
reader desiring to obtain an overview of the majority view of what constitutes
computer architecture. I believe that with sufficient basic background, the reader
can progress through the chapters, referring to the appendices only for detailed
information about certain processors. Along this vein, note that the last appendix
contains a listing of significant portions of several processor instruction sets; thus

XXii Preface

the reader can perform exercises that involve writing realistic programs for these
processors, which will give an appreciation for the significant differences among
several design approaches.

About Performance Topics. In contemporary practice, to get a paper ac-
cepted for publication in a computer architecture journal or conference, the
authors must simulate the proposed design and exercise that simulator against
“typical” programs. Many performance tables are presented. I have chosen to
downplay this aspect of architectural studies, because they do not affect the logi-
cal structure of the architect’s design options. Furthermore, the ultimate measure
of a system’s performance requires an incredibly detailed simulation of the com-
plete design, which clearly reaches to the scope of a large project, and therefore
is beyond the scope of this text.

Another reason for omitting performance measures is that the results de-
pend upon the particular programs used to exercise the simulator. In many stud-
ies, these are quite narrow, typically relying on certain Unix programs that use
few, if any, floating-point operations or on numeric applications that heavily ex-
ercise floating-point arithmetic. One might question the degree to which these
represent “typical” programs. And often one sees a significant variance among
the results across the set of programs. These comments should not be taken as
criticism of all papers that contain performance statistics; rather I wish to raise
your level of skepticism about performance results that do appear in the litera-
ture. A careful look at what was simulated and what programs were used
should give a hint about the degree to which the results might apply to a differ-
ent environment.

General and Specific Designs. The book presents optional ways to satisfy
many real-world goals that challenge designers of contemporary systems and
processors. In most chapters and appendices, one basic problem domain and the
fundamental approaches to those problems are developed at the beginning. Uses
of these basic approaches to specific situations at various levels are amplified in
the chapter. Some concepts, design details, and comparisons are presented and
detailed in problems rather than in the text. Therefore, designers are advised to
look at the problems in conjunction with the text.

Background. 1 assume that the reader is familiar with at least one proces-
sor design, one operating system, one programming language (preferably C++),
and the design of basic pipelined RISC processors. I do not assume any experi-
ence with multithread systems or with secure systems, which are covered exten-
sively in Chapters 6 through 9.

Structure of the Book. The book’s structure and approach reflect my belief
that the best way to understand a set of related problems and design issues is
first, to see the general techniques that could be used, and, second, to see how
those have been applied, both in straight and varied manners and in various

Preface xxiii

combinations, within real systems. To illustrate the common features, it is neces-
sary to structure the text around common problems or around common elements
of the system design. The book can be divided into three parts. The first part has
a structure based on the von Neumann breakdown of a uniprocessor sys-
tem—there are memory, control, and functional elements to each design. The
second part addresses issues that arise when multiple threads of control or
thought are simultaneously active within the overall system. The third part deals
with the additional constraints imposed on the system by protection and security
concerns. A brief outline of the topics in each chapter and appendix follows:

Chapter 1. Illusions: An introduction to the basic assumptions or illusions
that programmers use to cope with the complexity of computer systems. The il-
lusions reappear in the other chapters, where we point out how design options
can support the illusions.

Chapter 2. Instruction Set Design: A quick review of basic ideas in proc-
essor structure, which become the basis for many examples in the following
chapters. This is supplemented by material in Appendices A through D, where
specific processor architectures are detailed.

Chapter 3. Memory Organization: The process of getting from the name
of a memory object to an access to a physical location holding a set of bits; issues
of name mapping implementations (from symbol tables to hash tables and hier-
archical tables); linking; segmentation; paging; cache memories; memory inter-
connection structures. The material in Appendices E and F provides an essential
background for the discussion in this chapter. Appendix G discusses the func-
tions of associative memories and their implementation.

Chapter 4. Single-Stream Control: Basic structures for specifying control
flow through a sequentially processed program; Harvard and von Neumann ar-
chitectures; instruction representations; and brief comments regarding micropro-
gramming. This material is supplemented by Appendix H, which covers the
nonsequential control structures in Prolog.

Chapter 5. Object-Oriented Processing: Object types and classes; type-
based modularization; and processor and system support for type-based modu-
larization. This material is supplemented by Appendix I, covering the LISP lan-
guage and the design of a machine to support that language.

Chapter 6. Single I-Stream Parallelism: Importance of static discovery or
development of parallelism; ways to express parallelism within programs; find-
ing and adding parallelism to programs; SIMD array processors; MIMD array
processors; pipeline and barrel processors; and VLIW processors. Dynamic de-
tection of parallelism; superscalar architectures. Ways to restructure programs to
enhance the possibility of parallel execution. Appendix] covers systolic arrays,
which can perform special algorithms using static parallelism.

Chapter 7. Parallelism by Message Passing: Models of message passing;
functional correctness; programming models; interprocess and intermodule

XXiv Preface

communication; and input/output interactions. This material is supplemented
by Appendix K, covering data flow systems and their implementation. Some cor-
rectness proof arguments in Appendix L relate directly to these models.

Chapter 8. Shared-Resource Systems: Shared-memory systems; functional
correctness models; synchronization and coherence for programs and caches; ba-
sic uninterruptible instructions and their usage; implementations that support
the single copy and program order illusions; barrier instructions. Appendix L
discusses some reasoning strategies useful with shared-resource systems.

Chapter 9. Protection and Security: Protection schemes using page and
segment structures. Security requirements and their logical consequences, in-
cluding the Bell and LaPadula security model and the Biba integrity model; ba-
sic design approaches that might assure security properties; reference monitor
design approaches; and capability and type enforcement approaches to secure
system design.

Appendix A. SPARC Summary: The essential architectural features of the
SPARC processors, which has evolved from the early Berkeley RISC designs.

Appendix B. Alpha AXP: Essential features of this DEC microprocessor
design, which is based on several interesting design options, including the use of
low-level software to implement essential functions.

Appendix C. MC680x0 Processors: Some features of this architecture,
with emphasis on the MC68020, chosen because it includes some interesting fea-
tures that disappeared in later “compatible” processors; these include a flexible
coprocessor interface design and instructions for calling modules that execute
somewhat independently. These processors were inside all initial models of the
Macintosh family of personal computers.

Appendix D. Stack-Oriented Systems: The B 5700 and HP 3000 systems;
stack structures to support stacked allocations for activation blocks; special ad-
dressing modes that access local objects allocated within the stacked activation
blocks. The B 5700 uses the stack in place of registers in a load/store
architecture.

Appendix E. Naming Memory Objects: Techniques for specifying objects
in programming languages and within processor instructions. Special emphasis
on nested naming environments and two-dimensional addressing, because these
pose important design problems and implementation options.

Appendix F. Memory Allocation: Basic allocation policies and the sup-
porting management data structures; and options for processor support for these
functions.

Appendix G. Associative Memories: Operations provided in general-
purpose associative memories (more flexible than the simple equality-search
memories used in memory accessing). Several implementation strategies.

Appendix H. Prolog: The structure of this language based on “facts” and
“rules” collected within a database that serves as both the memory and the

Preface XXV

program. Some emphasis on the difficulties of implementing this language with
parallelism.

Appendix I. List Processing: Structure of a list processing language, em-
phasizing the data structures, the run-time definition capabilities, and the over-
lap between data and program in this language. An overview of the Symbolics
processors designed for efficient execution of LISP programs. Some emphasis on
their choice of list representations, which led to efficiency.

Appendix J. Systolic Arrays: Structure of systolic arrays, demonstrating
the difference between passing a program across data (the conventional view)
and passing data through an array (the systolic view). Mathematical descriptions
of these systems. Unfortunately, this approach seems to apply to only a few
classes of algorithms.

Appendix K. Data Flow Systems: Structure and implementation of these
systems, which are based on asynchronous activations of processing modules
that communicate by passing tokens across communication paths. These struc-
tures provide a basis for some proofs discussed in the next appendix.

Appendix L. Reasoning and Proofs: A few approaches to proving proper-
ties of systems and programs. History matrices and induction arguments.

Examples. The text’s programming examples use various programming
languages, frequently C++, which is only partially explained in the text. In a
similar manner, the processor examples emphasize features of several micro-
processors—the SPARC, the DEC Alpha AXP, and the Motorola MC680x0, espe-
cially the MC68020." These three processor architectures are surveyed in
Appendices A through C. Processors that directly support stack and list struc-
tures are presented in Appendices D and 1.

Many examples are based on features from other programming languages,
operating systems, multiprocessor structures, and processor designs. I have not
tried to make you an expert on all details of any of these designs; there are al-
ways myriad details needed to fashion a practical realization of an effective
system.

Trends and Concept List. Each chapter (or appendix) ends with three sec-
tions, the first, titled “Trends,” contains a brief projection of some apparent
trends related to the material covered in the chapter. The second section, entitled
“Concept List,” contains a listing of the important concepts that were discussed
in the chapter. And the third is the problem section.

Problems. I believe that solving problems is an important part of learning
from a text, for only in this way can you appreciate the subtle design details or
the subtle consequences of choosing certain design options. Some problems are

' I have received several comments to the effect that this architecture has been supplanted by subse-

quent developments, which is indeed true. I continue to use it because two of its features are architec-
turally interesting, but have been dropped from subsequent processors in the same series.

XXVi Preface

straightforward. Other problems pose design goals that may not be completely
specified. Therefore, part of your problem time will be spent interpreting the
problem statement. Some interesting and challenging problems place you in the
role of design consultant and critic—you will be given a design proposal to cri-
tique and asked to examine its implications for the complete system. The critique
problems should be considered thoughtfully; I do not recommend trying to solve
them in a single session. You should think about the proposal and then give your
mind at least overnight to ruminate on the proposal’s effects on a complete sys-
tem before you complete your critique. Except for the introductory first chapter,
every chapter and appendix contains some problems related to the material in
the chapter or appendix.

The Book as a Text. The book is written for use as a text. Seniors majoring
in computer science and graduate students in electrical engineering should be
able to cover the material in two quarters or in an intense single semester course.
A single semester schedule may require compressing things, making it a chal-
lenge to leave sufficient time for reflection and thought about the points being
made. The single semester schedule will require eliminating many of the appen-
dices from the classroom presentation.

The Book as a Design Tool. The book is useful as a design tool. It incorpo-
rates the essential features of and the concepts behind many diverse designs. For
this reason, it should be useful to both architects and implementers, enabling ar-
chitects to have more design options at their command and implementers to un-
derstand the roles of their module(s) within a complete system.

About the Language (in the Book). Contemporary writers face many prob-
lems concerning the “correct” usage of the English language. Regarding com-
puter systems or other technological artifacts, there is the problem of when the
systems or languages are, or were, in common usage. This difficulty leads the
author to question which tenses should be used when discussing these artifacts. I
want to explain my approach to these difficulties immediately, so the choices
will not lead the reader into incorrect or deceptive interpretations or conclusions.
I have chosen the following linguistic options:

1. All languages, systems, and designs are described in the present tense,
even though some of them are obviously obsolete as I write and others
may become obsolete soon after the book becomes available. A design or
language can become obsolete for many nontechnical reasons. These fac-
tors do not imply that all ideas within the design are not useful, but rather,
the design environment might have changed as technology or applications
evolve.

2. T'use C++ syntax for all programs that could be written in C++ and for pro-
grams incorporating concepts or structures that could become compatible
extensions of C++. However, C++ is not a “rich” language, in the sense that

Preface XXVii

it does not present all possible general structures and implementation chal-
lenges. Thus, some programming examples illustrate structures or con-
cepts that would never be considered compatible with C++. One example
is the static nesting of procedure definitions. Examples that are unlikely to
be considered compatible with C++ are expressed in a Pascal/ Ada syntax,
which is not explained in detail. The reader should be able to read these
programs and understand their structures by working from the first chap-
ter forward; except in a few easily detected places, the reader is not asked
to produce any programs incompatible with C++ or common assembly
language structures. I believe that most, if not all, example programs are
syntactically correct, but this is not a programming text, so it should not be
used as an accurate reference for program syntax.

3. Programming languages do not support boldface symbols, but [do use
boldface to emphasize keywords within programs and to distinguish key-
words from common English words within the body of the text. For exam-
ple, I talk about the for loop structure using a boldface font for for when it
denotes the keyword in the text or in programs. I also put all symbols that
appear in programs into the same sans-serif font used for programs.

4. Within assembly-level programs, I have tried to use the manufacturer’s
syntax, explaining it only as it seems necessary.

5. All comments in C++ programs are marked using the C++ style—with
double slashes to set off each comment, which runs to the end of the line.
This comment structure may not be compatible with the conventions of the
programming language used in the remainder of the line. Comments in
other programs are sometimes expressed in the Ada style, using a double
dash to set off the comment.

Best Wishes. 1 hope that you will learn interesting and useful things from
the book. In particular, I hope that you will appreciate the connections between
software and hardware design issues, leading you to a better appreciation of the
interlocking nature of these issues and their solutions. I hope that you will learn
optional ways to approach difficult, but not impossible, design goals and con-
straints. Also, I hope that you will learn about a few historically important de-
signs that were innovative in their times; many deserve continuing study to
assist the understanding of future designers. Perhaps in your time you will write
a book that follows this tradition and that you will contribute to keeping alive
my approach of integrating contemporary, historical, and untried (but logically
interesting) design approaches!

Richard Y. Kain
Minneapolis, Minnesota

ACKNOWLEDGMENTS

My students and colleagues have provided many helpful suggestions for im-
proving this text, and essential encouragement for this project. The students in
my classes have tolerated sketchy drafts of this book.

I extend special thanks to Mark Smotherman and Matthew Frank for vol-
untary reviews of the manuscript; they gave very helpful suggestions. Three stu-
dents from my class contributed significant editorial suggestions; I thank Derek
Lee, Scott vander Linde, and Greg Younker for this assistance.

The Prentice Hall reviewers, who made many helpful suggestions, include
Stephen J. Hartley, Dan C. Marinescu, Paul W. Ross, Robert Seban, and Douglas
Reeves. Several of them suggested that the draft had too much material; this led
me into a vast late-stage reorganization that moved one-third of the material into
the appendices. Of course, they are not responsible for any of the contents of the
book—after all, they probably do not agree with all of it anyhow!

I received some interesting suggestions from people watching the
comp.arch bulletin board on the Internet, though I did not place priority on all of
their suggestions. Special thanks go to George Papp, who saw my appeal and re-
sponded with helpful processor manuals.

The original impetus for this book came from Prentice Hall editors who
suggested that I make a significant revision of the previous book, compressing it
and updating material; Tom McElwee was the impetus in that direction. When
he moved to marketing, Bill Zobrist ably took over and reined me in to complete
the project. Chris Certain, the local representative, was quite helpful in getting
materials in a timely manner. The production editing was started by Bayani
DeLeon and finished by Rose Kernan, an able production editor who tolerated
last minute changes, including adding her name to these acknowledgments.

People at the AmiPro help line also deserve some thanks for getting me out
of several binds during the writing and production stages of this project.

Many people contributed to the previous book from which this was de-
rived by a tortuous process; those not mentioned here influenced this text, indi-
rectly through the old version.

Special thanks go to my wife, Katherine Simon Frank, without whose help
and encouragement this would not have been possible. Now we can both enjoy
life more as we celebrate the fact that the book is done!

XXiX

CONTENTS

PREFACE Xix
ACKNOWLEDGMENTS xxix
ILLUSIONS 1

1.1 Formalized Illusions 3

1.2 Hierarchical Illusions 5

1.3 Limits and Responsibilities 6
1.4 Historic Designs 7

1.5 Overview 8

1.6 Trends 9

1.7 Concept List 9

INSTRUCTION SET DESIGN 10

2.1 Basic Concepts 12

2.2 Processor State 12

2.3 Memory Structure 13
2.4 Instruction Formats 14
2.5 Control Instructions 16
2.6 Data Types 17

2.7 Object Manipulation 18
2.8 Summary 20

29 Trends 21

2.10 Concept List 21

2.11 Problems 22

MEMORY ORGANIZATION 23

3.1 Basic Naming Techniques 26
3.2 Basic Allocation Techniques 27

Contents

3.3 Basic Accessing Techniques 27
3.3.1 Object Designation Options, 27
3.3.2 Object Name Mapping Strategies, 30
3.3.3 Name Mapping Lifetimes, 31

3.4 Name Mapping Implementations 33
3.4.1 Additive Relocation, 33
3.4.2 Blocked-Pointer Relocation, 33
3.4.3 Tabular Mappings, 35
3.4.4 Comments, 46

3.5 Name Translation before Program Execution 46
3.5.1 Mapping Names in an Isolated Program Module, 48
3.5.2 Combining Translated Program Modules, 50
3.5.3 Comments, 57

3.6 Name Translation by an Executing Program 58
3.6.1 Automatic Objects, 59
3.6.2 Procedure Parameters, 66
3.6.3 User-Controlled Objects, 66
3.6.4 Dynamic Linking, 67
3.6.5 Comments, 70

3.7 Operating System Controlled Address Translations 70
3.7.1 Segmentation, 70
3.7.2 Paging, 72
3.7.3 Paged Segments, 74

3.8 The Processor-Memory Interface 75
3.8.1 Memory Management Units, 76
3.8.2 Cache Memory, 80
3.8.3 Memory Interleaving, 88
3.84 Memory Bandwidth, 92
3.8.5 Granularity, 94

3.9 Summary 96
3.10 Trends 97
3.11 Concept List 97
3.12 Problems 98

SINGLE STREAM CONTROL 112

4.1 Basic Control Concepts 113
4.1.1 Sequencing Constructs, 114
4.1.2 Program Location Options, 116
4.1.3 Control Implementation Options, 118

Contents

4.2

4.3

4.4

4.5
4.6
4.7
4.8

5.1

5.2

vii

4.14 Instruction Representation Options, 118
4.1.5 Comments, 119

High-Level Languages 119
4.2.1 Sequencing Constructs, 119
4.2.2 Program Location, 133
4.2.3 Implementation, 134

4.2.4 Representation, 134

4.2.5 Comments, 135

Processor-Level Control Issues 135
4.3.1 Sequencing Constructs, 135

4.3.2 Program Location, 154

4.3.3 Implementation, 154

4.3.4 Instruction Representation, 156
4.3.5 Comments, 158

Microcode Control Structures 158
4.4.1 Sequencing Structures, 161

4.4.2 Program Location, 166

4.4.3 Implementation, 168

4.44 Representation, 170

4.4.5 Comments, 171

Summary 171
Trends 172
Concept List 173
Problems 173

OBJECT-ORIENTED PROCESSING 187

Basic Concepts 189

5.1.1 Objects, 189

5.1.2 Specification of Programmer-Defined Types, 192
5.1.3 Object Activity, 200

5.1.4 Associations between Operations and Operands, 200
5.1.5 Comments, 202

High-Level Languages 202
5.2.1 Classes and Types, 202

5.2.2 Objects and Their Types, 204
5.2.3 Class Specifications, 205
5.2.4 Translation, 207

5.2.5 Comments, 209

viii

5.3

5.4
5.5
5.6
5.7

Processor Level 209

5.3.1 General Type Support, 210

5.3.2 Object Representations, 213

5.3.3 Associations between Operations and Operands, 214
5.3.4 Owverloading; Type Dependence, 217

5.3.5 Extensions to the Operation Set, 220

5.3.6 Comments, 228

Summary 229
Trends 230
Concept List 230
Problems 231

SINGLE |-STREAM PARALLELISM

6.1
6.2

6.3

6.4

6.5

6.6

Functional Correctness 240

Parallelism Detection and Performance 245
6.2.1 Performance Advantages, 245

6.2.2 Scheduling Task Execution, 247

Single-Thread Parallel-Programming Paradigms 253

6.3.1 Remote Procedure Call, 253

6.3.2 Remote Resumes, 255

6.3.3 Operations Amenable to Parallel Execution, 262
6.3.4 Parallel Statements, 263

6.3.5 Fork/Join Specifications, 264

6.3.6 Recovery Blocks, 265

6.3.7 Comments, 266

Enhancing Parallelism Opportunities 266
6.4.1 Adding Functional Units, 267

6.4.2 Register Assignments, 268

6.4.3 Unrolling Loops, 269

6.4.4 Comments, 272

Implementing Statically Scheduled Parallel Activities 272

6.5.1 SIMD Arrays, 272

6.5.2 Vector Operand Pipelines, 281
6.5.3 Barrel Processing, 300

6.5.4 VLIW Processors, 304

6.5.5 Horizontal Microprogramming, 305
6.5.6 Comments, 305

Implementing Dynamic I-Stream Parallelism 306
6.6.1 A Conceptual Value-Tracking Scheme, 306
6.6.2 Conceptual Design, 308

Contents

237

