


Stefan Niaher = Dorothea Wagner (Eds.)
Algorithm Engineering

4th International Workshop, WAE 2000
Saarbriicken, Germany, September 5-8, 2000
Proceedings

Springer




Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Stefan Naher

Universitat Trier, Fachbereich IV — Informatik
54286 Trier, Germany

E-mail: nacher @informatik.uni-trier.de

Dorothea Wagner

Universitat Konstanz, Fakultit fiir Mathematik und Informatik
78457 Konstanz, Germany

E-mail: Dorothea. Wagner @ uni-konstanz.de

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Algorithm engineering : 4th international workshop ; proceedings / WAE 2000,
Saarbriicken, Germany, September 5 - 8, 2000. Stefan Niaher ; Dorothea Wagner
(ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 1982)

ISBN 3-540-42512-8

CR Subject Classification (1998): F.2, G.2,E.1, C.2, G.1

ISSN 0302-9743
ISBN 3-540-42512-8 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are

liable for prosecution under the German Copyright Law.

Springer- Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN 10781307 06/3142 543210



Lecture Notes in Computer Science 1982
Edited by G. Goos, J. Hartmanis and J. van Leeuwen



Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London

Milan

Paris

Tokyo



Preface

This volume contains the papers accepted for the 4th Workshop on Algorithm
Engineering (WAE 2000) held in Saarbriicken, Germany, during 5-8 September
2000, together with the abstract of the invited lecture given by Karsten Weihe.
The Workshop on Algorithm Engineering covers research on all aspects of the
subject. The goal is to present recent research results and to identify and explore
directions for future research. Previous meetings were held in Venice (1997),
Saarbriicken (1998), and London (1999).

Papers were solicited describing original research in all aspects of algorithm
engineering, including:

— Development of software repositories and platforms which allow the use of
and experimentation with efficient discrete algorithms.

— Novel uses of discrete algorithms in other disciplines and the evaluation of
algorithms for realistic environments.

— Methodological issues including standards in the context of empirical re-
search on algorithms and data structures.

— Methodological issues regarding the process of converting user requirements
into efficient algorithmic solutions and implementations.

The program committee accepted 16 from a total of 30 submissions. The
program committee meeting was conducted electronically. The criteria for selec-
tion were originality, quality, and relevance to the subject area of the workshop.
Considerable effort was devoted to the evaluation of the submissions and to pro-
viding the authors with feedback. Each submission was reviewed by at least four
program committee members (assisted by subreferees). A special issue of the
ACM Journal of Ezperimental Algorithmics will be devoted to selected papers
from WAE 2000.

We would like to thank all those who submitted papers for consideration, as
well as the program committee members and their referees for their contribu-
tions. We gratefully acknowledge the dedicated work of the organizing commit-
tee, and the help of many volunteers. We thank all of them for their time and
effort.

July 2001 Stefan Naher
Dorothea Wagner
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On the Differences
between “Practical” and “Applied”

Karsten Weihe

Forschungsinstitut fiir Diskrete Mathematik
Lennéstr. 2, 53113 Bonn, Germany
weihekQacm.org

The terms “practical” and “applied” are often used synonymously in our commu-
nity. For the purpose of this talk I will assign more precise, distinct meanings to
both terms (which are not intended to be ultimate definitions). More specifically,
I will reserve the word “applied” for work

whose crucial, central goal is finding a feasible, reasonable (e.g. econom-
ical) solution to a concrete real-world problem, which is requested by
someone outside theoretical computer science for his or her own work.

In contrast, “practical” then will refer to every other sort of implementation—
oriented work. Most of the work published so far in WAE proceedings,
AL(EN)EX proceedings, and “applied” tracks of other conferences in theoretical
computer science is practical, not applied, in this spirit.

Many people got the fundamental experience that applied work is different
and obeys its own rules. Since both practical and applied work is very versatile,
it is hard to catch the exact differences. To get to the point, I will reduce the
versatility of practical work to a “pattern” of sound practical work, which (to my
feeling) reflects the current practice in our community quite well. The discussion
of the differences between “practical” and “applied” is then broken down into
discussions of the individual items in this pattern, which are more focused and
hopefully more substantiated.

The methodology of the talk is to formulate one (or more) differences be-
tween “practical” and “applied” for each item and to substantiate them by “war
stories” (in the sense of Skiena [13]). For brevity, most details (and all figures)
are omitted. Selected aspects are discussed in greater detail in [15].

Practical vs. Applied

In this talk and abstract, the difference between “practical” and “applied” is
roughly identical to the difference between natural sciences and engineering sci-
ences:

— In natural sciences, the “dirty” details of reality are abstracted away, and a
simplified, coherent scenario is analysed under “lab conditions.”

— Engineering sciences aim at a feasible, reasonable (e.g. economical) solution
to the use case at hand.

S. Naher and D. Wagner (Eds.): WAE 2000, LNCS 1982, pp. 1-10, 2001.
© Springer-Verlag Berlin Heidelberg 2001



2 Karsten Weihe

For example, the restriction to numerical criteria such as the run time and the
space consumption is already an abstraction; the effort for implementing an
algorithm and maintaining the implementation is often much more important
and must be taken into account in engineering work.

“Pattern” for Sound Practical Work

So far, there is no standardized pattern of sound practical work, although there
are various attempts to specify rules how to perform sound practical studies [2, 3,
5-10]. However, it seems to me that the following preliminary, immature pattern
comes close to the de—facto standard established by the majority of practical
papers specifically from our community:

— Choose an exact, clean, well-formalized problem.

— Implement algorithms from the theoretical literature and (optionally) own
new variants/algorithms.

— Collect input instances from random generators and (optionally) public
benchmark sets.

— Run the algorithms on these instances and collect statistical data on CPU
time, operation counts, etc.

— Evaluate the statistics to compare the algorithms.

Here is my personal list of significant differences:

— Choose an exact, clean, well-formalized problem...

... but the problem may be highly underspecified and volatile.
— Implement algorithms from the (theoretical) literature...

... but the algorithms from the literature may be inappropriate.
— Collect input instances from random generators...

... but random instances may be very different from real-world instances and
thus mislead the research.

— Make statistics on CPU time, operation counts, etc...

... but what to measure is not always clear.

... but non—quantifiable characteristics are often more important.
— Compare the algorithms...

... but the algorithms may solve different specifications of the underspecified
problem.

Detailed Differences

Difference 1:

Choose an exact, clean, well-formalized problem...
... but the problem may be highly underspecified and volatile.
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Very often, crucial details of the problem definition are not understood even if
the problem is purely mathematical in nature. Even worse, the problem may
involve psychological, sociological, political, etc., aspects, which might hardly be
expressible in mathematical terms.!

If we can find a mathematical model whose theoretical outcome comes close
to the empirical observations (and is efficiently computable), fine. However, per-
sonally, I was mainly confronted with applications from the real world in which
such a model was beyond our analytical skills. An insightful example was pre-
sented in [16,17]: the surface of a CAD workpiece is given as a mesh, that is, as
a set of elementary surface patches (think of continuously deformated, curved
polygons in the three-dimensional space). If two patches are intended to be
neighbored on the approximated surface, they do not necessarily meet but are
placed (more or less) close to each other. The problem is to reconstruct the
neighborhood relations.

The methodological problem is this: the neighborhood relations are a purely
subjective ingredient, namely the intention of the designer of the workpiece.
In [16] we presented a computational study, which suggests that the data is too
dirty to allow promising ad-hoc formalizations of the problem.? On the other
hand, there is no evidence that a more sophisticated problem definition comes
reasonably close to reality.

For a better understanding it might be insightful to compare this problem
with another, more common class of problems (which stands for many others):
graph drawing. The problem addressed in Difference 1 is certainly not new. Graph
drawing is also an example for subjective ingredients, because the ultimate goal
is not mathematical but aesthetical or cognitive. Nonetheless, various adequate
mathematical models have been used successfully for real-world problems in this
realm.

However, there is an important difference between these two real-world prob-
lems, and this difference is maybe insightful beyond this contrasting pair of spe-
cific examples. In the CAD problem from [16,17], there is exactly one correct
solution. All human beings will identify it by a brief visual inspection of a picture
of the whole workpiece, because the overall shape of a typical workpiece is easily
analysed by the human cognitive apparatus. In other words, everybody recog-
nizes the correct neighborhood relations intuitively,® but nobody can specify the
rules that led him/her to the solution. In particular, every deviation from this
solution could be mercilessly identified by a punctual human inspection.

Thus, although the problem definition is fuzzy, the evaluation of a solution
by the end—user is potentially rigorous. In contrast, the aesthetical evaluation of

1 L. Zadeh, the inventor of fuzzy logic, found a pregnant formulation of Difference 1:
precision is the enemy of relevance (citation translated back from German and thus
possibly not verbatim).

2 For instance, one ad-hoc approach, which is (to our knowledge) the standard ap-
proach outside academia, is to regard two patches as neighbored if their “distance”
according to some distance measure is smaller than a fixed threshold value.

3 Except for rare pathological cases, in which it was hard or even impossible to guess
the designer’s intention.
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a graph drawing is as fuzzy as the problem definition itself. Roughly speaking, it
suffices to “please” the end—user. To rephrase this difference a bit more provoca-
tively: the strength of the meaning of “successful” may vary from application to
application.

Difference 2:

Implement algorithms from the (theoretical) literature...
... but the algorithms from the literature may be inappropriate.

For example, a lot of work on various special cases of the general scheduling
problem has been published throughout the last decades. Most theoretical work
concentrates on polynomial special cases and makes extensive use of the restric-
tion to a hand—picked collection of side constraints and objectives.

However, a typical real-world scheduling problem might involve a variety of
side constraints and objectives. At least for me, there is no evidence (not to
mention a concrete perspective) that any of these theoretical algorithms can
be generalized to complex problem versions such that it truly competes with
meta—heuristics like genetic algorithms and simulated annealing.

Difference 3:

Collect input instances from random generators...

... but random instances may be very different from real-world instances
and thus mislead the research.

From the above example: what in the world is a random CAD workpiece?

Of course, we could try to identify certain “typical” statistical characteris-
tics of CAD workpieces and then design a random generator whose outputs also
have these characteristics. However, the profit from such an effort is not clear.
If the “realistic” random instances reveal the same performance profile as the
real-world instances, they do not give any additional information. On the other
hand, if they provide a significantly different profile, does that tell us some-
thing about the expected performance of our algorithms in the application —
or about the discrepancy between the real-world instances and our randomized
approximation of reality?

Another result [14] may serve as an extreme, and thus extremely clarifying,
example: for a given set of trains in some railroad network, the problem is to
find a set of stations of minimal cardinality such that every train stops at one
(or more) of them. We can regard each train as a set of stations, so the problem
amounts to an application of the hitting—set problem (which is NP-hard [4]).

In a preprocessing phase, two simple data—reduction techniques were applied
time and again until no further application is possible:

1. If all trains stopping at station S; also stop at station S, then S; can be
safely removed.
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2. If a train T} only stops at stations where train 75 also stops, then T can be
safely removed.

The computational study in [14] evaluated this technique on the timetables of
several European countries (and their union) and in each case on various selected
combinations of train classes. The message of [14] is the impressing result of this
study: each of these real-world instances — without any exception! — was reduced
to isolated stations and a few, very small non-trivial connected components.
Clearly, all isolated stations plus an optimal selection from each non-trivial
connected component is an optimal solution to the input instance. A simple
brute—force approach is then sufficient.

Due to this extreme result, the general methodological problem is obvious:
since this behavior occurred in all real-world instances with negligible variance,
“realistic” random instances should also show this behavior. However, if so, they
do not give any new insights.

Difference 4:

Make statistics on CPU time, operation counts, etc...
... but what to measure is not always clear.

It is good common practice in statistics to specify the goals of a statistical
evaluation before the data is collected. In algorithmics, the favorite candidates
are run time (in terms of raw CPU time, operation counts, cache misses, etc.) and
space consumption. This is also the usual base for comparisons of algorithms.

However, sometimes the “right” measure to capture the quality of an algo-
rithm is only known afterwards, and it may be specific for a particular algorith-
mic approach. The second concrete example in the discussion of Difference 3,
covering trains by stations, may also serve as an illustration of Difference 4.

In this example, the space consumption and run time of the preprocessing
phase and the brute—force kernel are negligible compared to the space require-
ment of the raw data and the time required for reading the raw data from the
background device. What really counts is the number of non-trivial connected
components and the distribution of their sizes. Of course, this insight was not
anticipated, so the only relevant statistical measures could not be chosen a pri-
ori. It goes without saying that these measures are specific for the application
and for the chosen algorithmic approach. It is not clear what a reasonable, fair
measure for comparisons with other algorithmic approaches could look like.

Difference 5:

Make statistics on CPU time, operation counts, etc...

... but non—quantifiable characteristics are often more important.

Here are three examples of non—quantifiable characteristics:
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— Flexibility:

The typical algorithmic result in publications from our community is focused
on one specific problem, very often a very restricted special case of a general
problem (e.g. a classical problem such as disjoint-paths or Steiner—tree re-
duced to a restricted class of graphs). However, in an application project, one
cannot assume that the formal model can be once designed in the first phase
and is then stable for the rest of the development phase (not ot mention the
maintenance phase). In Difference 1, two frequently occurring causes were
stated:

e The problem in which the “customer” is interested may change (volatile
details).
e Our understanding of the (underspecified) problem changes.

Simple, artificial example for illustration: suppose we are faced with a prob-
lem on embedded planar graphs, and after a lot of hard theoretical work,
we found an equivalent problem in the dual graph, which can be solved in-
credibly fast by a smart implementation of an ingenious algorithm. Then
you feed the implementation with the data provided by the company, and it
crashes...

Error tracing reveals that there are edge crossings in the data. You call the
responsible manager to complain about the dirtiness of the data. However,
the manager will maybe tell you that the graph may indeed be slightly non—
planar. Our assumption that the graph always be planar was the result of
one of these unavoidable communication problems.

Our imaginary algorithm relied on the dual graph, so it can probably not
be generalized to the new situation. In other words, our algorithm was not
flexible enough, and chances are high that we have to start our research from
scratch again.

— FError diagnostics:

Most algorithms in the literature simply return “sorry” in case the input
instance is unsolvable. Some algorithms also allow the construction of a
certificate for infeasibility. However, the answer “sorry” and a certificate
for infeasibility are not very helpful for the end—user. The end—user needs to
know what (s)he can do in order to overcome the problem. This information
may be quite different from a certificate.

The main example for Difference 1, reconstructing the neighborhood rela-
tions among the patches of a CAD model, may also serve as an example for
this point. As mentioned above, there is no perspective for a realistic formal
model. Nonetheless, algorithmics can make a significant contribution here,
if the problem definition is changed slightly in view of error diagnostics.
Since no satisfactory algorithmic solution is available, the result of an algo-
rithm must anyway be corrected by the end—user. Hence, a more realistic
objective would be to provide an approximation of the solution which only
requires a minor revision effort from the end-user. Of course, a small num-
ber of errors is helpful for that, so one could be tempted to simply relax the
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problem to its optimization version: errors are admitted but should be kept
to a minimum.
However, the revision effort of the end—user is mainly determined by the
problem to find the errors. This insight gives rise to another objective: con-
struct an (erroneous) solution that can be presented visually such that the
errors are easily found by human beings. It has turned out [16] that this
problem is indeed treatable. Roughly speaking, it suffices to construct an
overestimation of the correct solution. A simple coloring of a picture of the
workpiece then allows the end—user to find all errors through a brief glance
over the picture. Of course, the number of errors in the overestimation should
still be as small as possible. However, this is not the main point anymore. It
is more important to ensure that all details are on the “safe” (overestimat-
ing) side. To guarantee this,* a larger number of errors must potentially be
accepted.
To summarize, only the deviation from the classical algorithmic viewpoint
(which means that a problem should be solved fully automatically) allowed
an algorithmic treatment of the problem.

— Interactivity:
An algorithm is not necessarily implemented as a stand—alone module, but is
often intended as a core component of a larger software package. Nowadays,
software packages are typically interactive, and this may have an impact on
the feasibility of an algorithmic approach.
An example is production planning in a factory.® Here are three concrete
examples of requirements imposed by interactivity.

e Additional input:
If a new customer order is accepted, the schedule must be computed
again. It is often highly desirable that the schedule does not change
significantly. For example, most random approaches might be excluded
by this requirement.

e Additional restrictions imposed interactively:

For example, for reasons that are outside the underlying formal problem
specification, the end—user (the supervising engineer-on-duty) may wish
to fix the execution time of a job in advance. For example, a so—called
campaign is a certain period in which a certain machine is only allowed
to execute specific operations. Campaigns are possibly outside the formal
model, simply because they are hard to handle algorithmically. To handle
them manually, the end—user must be able to fix the execution times of
selected operations to the campaign time.

Note that there is a significant difference to the first item: a new customer
order is nothing but additional input; time restrictions may not be part

4 Of course, a rigorous mathematical guarantee is beyond our reach, so an empirical
“guarantee” must suffice.

® This example was taken from on-going work. No quotable manuscript is available
so far.
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of the original problem definition and thus requires an extension of the
model.

e Fast termination required:

Sometimes the end-user needs a fairly good solution (which need not
be totally feasible) very quickly. For example, the end—user must decide
quickly whether an additional customer order can be accepted or not
(imagine the customer calls the engineer-on—duty by phone). Then the
engineer needs a raw estimation of the production plan. This requires
something like an iterative algorithm that produces fairly good inter-
mediate results right from the beginning. In other words, algorithmic
approaches that do not have such a property are excluded.

Difference 6:

Compare the algorithms...

... but the algorithms may solve different specifications of the underspec-
ified problem.

Mesh refinement [11,12] is an example of Difference 6. In the CAD design pro-
cess, this is the next step after the reconstruction of the neighborhood relations
(which was the main example for Difference 1 and for item “failure handling and
error diagnostics” of Difference 5). The problem is to decompose each patch into
quadrilateral patches such that a mathematical analysis (finite-element analy-
sis) is efficient and accurate. This problem is also an example for Difference 1
because it is only roughly understood how algorithmically treatable criteria such
as the shapes of the quadrilaterals affect the performance of the finite-element
method.

Not surprising, the individual algorithms proposed in the literature are based
on various, completely different formal models (which are often not even stated
explicitly), and they are tuned in view of the objectives of the corresponding
model. A comparison of two or more algorithms must also be based on some
formal model. However, there seems to be no “neutral” formal model, which is
fair to all approaches.

This problem also occurs silently in comparisons with manual work. Many
algorithmic problems from the industry were first solved by hand, and the first
algorithmic results are compared to the manual solutions in use. However, many
decisions in the manual design of solutions might be due to criteria that have
never been made explicit, but were applied “intuitively.” If the comparison of
the algorithmic and the manual results is based on the side costraints obeyed
by the algorithm and the objective function optimized by the algorithm, the
evaluation is inevitably unfair to the manual solution.

Conclusion

Meta-heuristics such as simulated annealing, genetic algorithms, and neural net-
works are very popular and in wide-spread use outside academia. From personal



