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Preface

An early experiment that conceives the basic idea of Monte Carlo compu-
tation is known as “Buffon’s needle” (Dorrie 1965), first stated by Georges
Louis Leclerc Comte de Buffon in 1777. In this well-known experiment, one
throws a needle of length ! onto a flat surface with a grid of parallel lines
with spacing D (D > [). It is easy to compute that, under ideal conditions,
the chance that the needle will intersect one of the lines is 2//xD. Thus, if
we let py be the proportion of “intersects” in NV throws, we can have an
estimate of 7 as '

which will “converge” to 7 as N increases to infinity. Numerous investiga-
tors actually used this setting to estimate w. The idea of simulating random
processes so as to help evaluate certain quantities of interest is now an es-
sential part of scientific computing,.

A systematic use of the Monte Carlo method. for real sc1ent1ﬁc prob-
lems appeared in the early days of electronic computing (1945-55) and
accompanied the development of the world’s first programmable “super”
computer, MANIAC (Mathematical Analyzer, Numerical Integrator and
Computer), at Los Alamos during World War II. In order to make a good
use of these fast computing machines, scientists (Stanislaw Ulam, John von
Neumann, Nicholas Metropolis, Enrico Fermi, etc.) invented a statistical
sampling-based method for solving numerical problems concerning random
neutron diffusion in fissile material in atomic bomb designs and for esti--
mating eigenvalues of the Schrodinger equation. The basic idea underlying
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the method was first brought up by Ulam and deliberated between him
and von Neumann in a car when they drove together from Los Alamos to
Lamy. Allegedly, Nick Metropolis coined the name “Monte Carlo,” which
played an essential role in popularizing the method.

In the early 1950s, statistical physicists (N. Metropolis, A. Rosenbluth,
M. Rosenbluth, A. Teller, and E. Teller) introduced a Markov-chain-based
dynamic Monte Carlo method for the simulation of simple fluids. This
method was later extended to cover more and more complex physical
systems, including spin glass models, harmonic crystal, polymer models,
etc. In the 1980s, statisticians and computer scientists developed Monte-
Carlo-based methods for a wide variety of tasks such as combinatorial op-
timizations, nonparametric statistical inference (e.g., jackknife and boot-
strap), likelihood computation with missing observations, statistical ge-
netics analysis, Bayesian modeling and computations, and others. In the
1990s, the method began to play an important role in computational biol-
ogy and was used to solve problems in sequence motif identification and the
analysis of complex pedigree. Now, the list of application areas of Monte
Carlo methods includes biology (Leach 1996, Karplus and Petsko 1990,
Lawrence, Altschul, Boguski, Liu, Neuwald and Wootton 1993), chem-
istry (Alder and Wainwright 1959), computer science {Kirkpatrick, Gelatt
and Vecchi 1983), economics and finance (Gouriérourx and Monfort 1997);
engineering (Geman and Geman 1984), material science (Frenkel and Smit
1996), physics (Metropolis, Rosenbluth, Rosenbluth, Teller and Teller 1953,
Goodman and Sokal 1989, Marinari and Parisi 1992), statistics (Efron
1979, Gelfand and Smith 1990, Rubin 1987, Tanner and Wong 1987), and
many others. Among all Monte Carlo methods, Markov chain Monte Carlo
(MCMC) provides an enormous scope for dealing with very complicated
stochastic systems and has been the central pillar in the study of macro-
molecules and other physical systems. Recently, the MCMC methodology
has drawn much attention from statisticians because the method enables
them to entertain more sophisticated and realistic statistical models.

Being attracted by the extreme flexibility and power.of the Monte Carlo
method, many researchers in different scientific areas have contributed to
its development. However, because a substantial amount of domain-specific
knowledge is required in order to understand problems in any of these fields,
communications among researchers in these fields are very limited. Many
efforts have been devoted to the reinvention of techniques that have been
developed in other fields. It is therefore desirable to develop a relatively gen-
eral framework in which scientists in every field — e.g., theoretical chemists,
statistical physicists, structural biologists, statisticians, econometricians,
and computer scientists — can compare their Monte Carlo techniques and
learn from each other. For a large number of scientists and engineers who
employ Monte Carlo simulation and related global optimization techniques
(such as simulated annealing) as an essential tool in their work, there is also
a need to keep up to date with recent advances in Monte Carlo method-
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ologies and to understand the nature and connection of various proposed
methods. The aim of this book is to provide a self-contained, unified, and
up-to-date treatment of the Monte Carlo method.

This book is intended to serve three audiences: researchers specializing in
the study of Monte Carlo algorithms; scientists who are interested in using
advanced Monte Carlo techniques; and graduate students in statistics, com-
putational biology, and computer sciences who want to learn about Monte
Carlo computations. The prerequisites for understanding most of the meth-
ods described in this book are rather minimal: a one-semester course on
probability theory (Pitman 1993) and a one-semester course on theorétical
statistics (Rice 1994), both at the undergraduate level. However, it would
be more desirable if the reader has some background in a specific scien-
tific field such as artificial intelligence, computational biology, computer
vision, engineering, or Bayesian statistics in which heavy computations are
invalved. This book is most suitable for a second-year graduate-level course

"on Monte Carlo methods, with an emphasis on their relevance to scientific
and statistical research.

The author is most grateful to his mentor and friend Wing Hung Wong
for his many important suggestions, his overwhelming passion for Monte
Carlo and scientific problems, and his continuous encouragement. The au-
thor is also grateful to Persi Diaconis for teaching him many things includ-
ing Markov chain theory, group theory, and nonparametric Bayes methods,
to both Susan Holmes and Persi for numerous enlightening conversations
on Markov chain Monte Carlo and other related problems, to Donald B.
Rubin for insights on the missing data formulation and the Bayesian think-
ing, to Jonathan Goodman for helpful comments on multigrid Monte Carlo,
to Yingnian Wu and Songchun Zhu for their materials on pattern simula-
tions and thoughts on conditional sampling, to Faming Liang for his supply
of many examples and figures, and to Minghui Chen and David van Dyk
for helpful comments. Several former graduate students in the statistics
departments of Stanford and Harvard universities — Yuguo Chen, Lingyu
Chen, Chiara Sabatti, Tanya Logvinenko, Zhaohui Qin and Juni Zhang —
have contributed in many ways to the development of this book. Ms. Helen
Tombropoulos has provided editorial assistance to the author both for this
book and for many articles published earlier. Finally, the author is greatly
indebted to his wife Wei for her love and her continuous support of his
research activities these years. Part of the book was written when the au-
thor was on the faculty of the Statistics Department of Stanford University.
This work was also partially supported by the National Science Foundation
Grants DMS-9803649 and DMS-0094613.

Cambridge, Massachusetts Jun Liu
March 2001
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1

Introduction and Examples

1.1 The Need of Monte Carlo Techniques
An essential part of many scientific problems is the computation of integral
1= [ g0,
D

where D is often a region in a high-dimensional space and g(x) is the target
function of interest. If we can draw independent and identically distributed

(ii.d.) random samples x(¥), ... ,x{™) uniformly from D (by a computer),
an approximation to I can be obtained as
- 1

{g(xM) +--- + g(x™)}.

L,=—
m
The law of large numbers states that the average of many independent

random variables with common mean and finite variances tends to stabilize
at their common mean (see the Appendix); that is,

lim I, =1, with probability 1.

m—0o0

Its convergence rate can be assessed by the central limit theorem (CLT):
\/a(i,,,‘— I) = N(0,0?), in distribution,

where o2 = var{g(x)}. Hence, the “error term” of this Monte Carlo ap-
proximation is O(m~1/2), regardless of the dimensionality of x. This basic
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setting underlies the potential role of the Monte Carlo methodology in
science and statistics.

In the simplest case when D = [0,1] and I = fol g(z)dz, one can approx-
imate I by ‘ ‘

In= = {g(ba) + -+ (b))

where b; = j/m. This method can be called the Riemann approzimation.
When g is reasonably smooth, the Riemann approximation gives us an er-
ror rate of O(m™!), better than that of the Monte Carlo method. More
sophisticated methods such as Simpson’s rule and the Newton-Cotes rules
give better numerical approximations (Thisted 1988). However, a fatal de-
fect of these deterministic methods is that they do not scale well as the
dimensionality of D increases. For example, in a 10-dimensional space with
D = [0,1]*9, we will have to evaluate O(m?°) grid points in order to achieve
an accuracy of O(m™1!) in the Riemann approximation of I. In contrast, the
naive Monte Carlo approach, which draws z}), ... | z{™) uniformly from D,
has an error rate O(m™/2) regardless of the dimensionality of D, at least
theoretically.

Although the “error rate” of a Monte Carlo integration scheme remains
the same in high-dimensional problems, two intrinsic difficulties arise: (a)
when the region D is large in high-dimensional space, the variance o2, which
measures how “uniform” the function g is in region D, can be formidably
large; (b) one may not be able to produce uniform random samples in an
arbitrary region D). To overcome these difficulties, researchers often employ
the idea of importance sampling in which one generates random samples
xM ... ,x(™ from a nonuniform distribution 7 (x) that puts more proba-
bility mass on “important” parts of the state space D). One can estimate
integral I as

which has a variance 02 = var, {g(x)/m(x)}- In the most fortunate case, we

may choose m(x) x g(x) when g is non-negative and 1 is finite, which results
in an exact estimate of I. But in no known application of the Monte Carlo
method has this “luckiest situation” ever occurred. More realistically, we
may hope to find a good “candidate” 7 which will explore more in regions
where the value of g is high. In such a situation, generating random draws
from 7 can be a challenging problem.

Demands for sampling from a nonuniform distribution = are also seen
from another set of problems in bioinformatics, computational chemistry,
physics, structural biology, statistics, etc. In these problems, the desired
probability distribution 7(x) of a complex system, where x is often called a
configuration of the system, arises from basic laws in physics and statistical



