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Preface

No study of any complexity manages to collect all the intended data. Analysis
of the resulting partially collected data must therefore address the issues raised
by the missing data. Unfortunately, the inferential consequences of missing data
are not simply restricted to the proportion of missing observations. Instead, the
interplay between the substantive questions and the reasons for the missing data
is crucial. Thus, there is no simple, universal, solution.

Suppose, for the substantive question at hand, the inferential consequences
of missing data are nontrivial. Then the analyst must make a set of assumptions
about the reasons, or mechanisms, causing data to be missing, and perform an
inferentially valid analysis under these assumptions. In this regard, analysis of a
partially observed dataset is the same as any statistical analysis; the difference
is that when data are missing we cannot assess the validity of these assumptions
in the way we might do in a regression analysis, for example. Hence, sensitivity
analysis, where we explore the robustness of inference to different assumptions
about the reasons for missing data, is important.

Given a set of assumptions about the reasons data are missing, there are a
number of statistical methods for carrying out the analysis. These include the EM
algorithm, inverse probability weighting, a full Bayesian analysis and, depending
on the setting, a direct application of maximum likelihood. These methods, and
those derived from them, each have their own advantages in particular settings.
Nevertheless, we argue that none shares the practical utility, broad applicability
and relative simplicity of Rubin’s Multiple Imputation (MI).

Following an introductory chapter outlining the issues raised by missing data,
the focus of this book is therefore MI. We outline its theoretical basis, and then
describe its application to a range of common analysis in the medical and social
sciences, reflecting the wide application that MI has seen in recent years. In par-
ticular, we describe its application with nonlinear relationships and interactions,
with survival data and with multilevel data. The last three chapters consider prac-
tical sensitivity analyses, combining MI with inverse probability weighting, and
doubly robust MI.

Self-evidently, a key component of an MI analysis, is the construction of
an appropriate method of imputation. There is no unique, ideal, way in which
this should be done. In particular, there there has been some discussion in the
literature about the relative merits of the joint modelling and full conditional
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specification approaches. We have found that thinking in terms of joint models
is both natural and convenient for formulating imputation models, a range of
which can then be (approximately) implemented using a full conditional speci-
fication approach. Differences in computational speed between joint modelling
and full conditional specification are generally due to coding efficiency, rather
than intrinsic superiority of one method over the other.

Throughout the book we illustrate the ideas with several examples. The code
used for these examples, in various software packages, is available from the
book’s home page, which is at http://www.wiley.com/go/multiple
_imputation, together with exercises to go with each chapter.

We welcome feedback from readers; any comments and corrections should
be e-mailed to mi@Ishtm.ac.uk. Unfortunately, we cannot promise to respond
individually to each message.
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Glossary

Indices and symbols

i indexes units, often individuals, unless defined otherwise

J indexes variables in the data set, unless defined otherwise

n total number of units in the data set, unless defined otherwise
2 depending on context, number of variables in a

data set or number of parameters in a statistical model
X,Y,Z  random variables
Y,

i'" observation on j'

variable, i = 1,...,n, j=1,..., p.
0 generic parameter

0 generic parameter column vector, typically p x 1

B,y.,d regression coefficients

B column vector of regression coefficients, typically p x 1.

Matrices
Q matrix, typically of dimension p x p.
2 i, j™ element of R
e’ transpose of 2, so that SZ,T’ =R,
Y, = ..., Y,,‘j)T n x 1 column vector of observations on variable F-
tr(L2) sum of diagonal elements of 2, ie } R, ;
known as the trace of the matrix.
Abbreviations
AIPW Augmented Inverse Probability Weighting
CAR Censoring At Random
CNAR Censoring Not At Random
EM Expectation Maximisation
FCS Full Conditional Specification
FEV, Forced Expiratory Volume in 1 second (measured in litres)
FMI Fraction of Missing Information

IPW Inverse Probability Weighting



Xviii

MAR
MCAR
MI
MNAR
POD
POM
S.E.

GLOSSARY

Missing At Random

Missing Completely At Random
Multiple Imputation

Missing Not At Random
Partially Observed Data
Probability Of Missingness
Standard error

Probability distributions

A
F(.)
h|7

probability distribution function

cumulative distribution function

to be verbalised ‘given’, as in f(Y|X)

‘the probability distribution function of Y given X’
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