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Preface

In this book, the name “quantum graph” refers to a graph con-
sidered as a one-dimensional simplicial complex and equipped with a
differential operator (“Hamiltonian”). Works that currently would be
classified as discussing quantum graphs have been appearing since at
least the 1930s in various areas of chemistry, physics, and mathemat-
ics. However, as a coherent and actively pursued topic, the area of
quantum graphs has experienced an explosive growth only in the last
couple of decades. There are manifold reasons for this surge. Quantum
graphs arise naturally as simplified models in mathematics, physics,
chemistry, and engineering when one considers propagation of waves
of various nature through a quasi-one-dimensional (e.g., “meso-" or
“nano-scale”) system that looks like a thin neighborhood of a graph.
One can mention in particular the free-electron theory of conjugated
molecules, quantum wires, photonic crystals, carbon nano-structures,
thin waveguides, some problems of dynamical systems, system theory
and number theory, and many other applications that have led inde-
pendently to quantum graph models. Quantum graphs also play a role
of simplified, although still non-trivial, models for studying difficult
issues, for instance, Anderson localization and quantum chaos.

There are fruitful relations of quantum graphs with the older spec-
tral theory of “standard” (combinatorial) graphs [191,195,213-215,
415] and with what is sometimes called discrete geometric analysis
[682]. Quantum graphs present new non-trivial mathematical chal-
lenges, which makes them dear to a mathematician’s heart. As the
reader will see, work on quantum graph theory and applications has
brought together tools and intuition coming from graph theory, com-
binatorics, mathematical physics, PDEs, and spectral theory.

In the new millennium, these relations between the various topics
leading to quantum graphs were noticed, which has triggered a series
of interdisciplinary meetings and intensive communication and coop-
eration among researchers coming from different areas of science and
engineering. Surveys and collections of papers on quantum graphs and
related issues have started to appear (e.g., [98,121,122,126,161,353,
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421,438,477-480,536,614,615,622]). These surveys, however, usu-
ally focus on special features of quantum graph theory and there is still
no comprehensive introduction to the topic, which is why the authors
decided to write this text. The book is intended to serve a dual pur-
pose: to provide an introduction to and survey of the current state of
quantum graph theory, as well as to serve as a reference text, where
the main notions and techniques are collected.

The authors are indebted to many colleagues, from whom they have
learned over the years a great deal about quantum graph theory and
related issues. This includes, in particular, M. Aizenman, R. Band,
J. Bolte, R. Carlson, Y. Colin de Verdiere, P. Exner, A. Figotin,
M. Freidlin, L. Friedlander, S. Fulling, S. Gnutzmann, R. Grigorchuk,
J.M. Harrison, J. P. Keating, E. Korotyaev, V. Kostrykin, M. Kotani,
T. Kottos, L. Kunyansky, S. Molchanov, V. Nekrashevich, S. Novikov,
K. Pankrashkin, B. Pavlov, O. Post, H. Schantz, R. Schrader, M. Shu-
bin, U. Smilansky, A. Sobolev, M. Solomyak, T. Sunada, A. Teplyaev,
B. Vainberg, I. Veseli¢, and B. Winn. The second author has been sig-
nificantly influenced by the late M. Birman, R. Brooks, and V. Geyler.
We cordially thank S. Fulling, W. Justice and our graduate students
N. Do, W. Liu and T. Weyand for their critical reading of the manu-
script and numerous corrections.

We are grateful to the reviewers, especially those who had to endure
the cruel and unusual punishment of refereeing several versions, for
many important suggestions. Our thanks go to the people from the
AMS office for invaluable help. We are especially grateful to S. Gelfand,
without whose insistence this book would have never been finished, and
C. Thivierge for constant support during the production.

Some parts of this work were supported by grants from the National
Science Foundation. The authors express their gratitude to the NSF
for the support.

Finally, we are grateful to our families for their limitless patience.

Gregory Berkolaiko and Peter Kuchment
College Station, TX
July 2012



Introduction

In this book, our goal is to introduce the main notions, structures,
and techniques used in quantum graph studies, as well as to provide
a brief survey of more special topics and applications. This task has
shaped the book as follows: we present in detail the basic constructions
and frequently used technical results in Chapters 1 and 2, devoted to
quantum graph operators, and Chapters 3 — 5, which address various
issues of the spectral theory of quantum graphs. The remaining two
chapters are of review nature and thus less detailed; in most cases the
reader will be directed to the cited literature for precise formulations
and proofs. Using graphs as models for quantum chaos is considered in
Chapter 6. Chapter 7 provides a brief survey of various generalizations
and applications. The reader will notice that the area is developing
very fast; had we tried to be more specific in this chapter, it would be
outdated by the time of publications anyway.

Our intent was to make the book accessible to graduate and ad-
vanced undergraduate students in mathematics, physics, and engineer-
ing.

Since a variety of techniques are used, for the benefit of the reader
we introduce the main notions and relevant results in graph theory,
functional analysis, and operator theory in a series of Appendices.

In order to make reading smoother, we normally do not include
references in the main text of the chapters, collecting them, as well
as additional comments, in the specially devoted last section of each
chapter. We also have not tried to make the considerations too gen-
eral. For instance, we mostly treat the second derivative operators on
quantum graphs, while considerations could be easily extended to the
more general Schrédinger operators. When we do mention more gen-
eral operators, we do not look for the most general conditions on the
coefficients (potentials), settling for some reasonable conditions that
make the techniques work.

xiii
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CHAPTER 1

Operators on Graphs. Quantum graphs

In this chapter, we introduce the main players of the quantum graph
theory: metric graphs and differential operators on them. A graph
consists of a set of points (vertices) and a set of segments (edges) con-
necting some of the vertices (Fig. 1).

More notions and results concerning graph theory can be found in
Section 1.1) and Appendix A. Most mathematicians are already famil-
iar with combinatorial graphs (which we survey briefly in Section 1.1),
where the vertices are the main players and the edges merely indicate
some relations between them. In a metric graph, in contrast, atten-
tion is focused on the edges. Metric graphs are introduced in Section
1.3. Quantum graphs are essentially metric graphs equipped with dif-
ferential operators. Such operators (Hamiltonians) are considered in
Section 1.4. The main operator under consideration acts as the second
derivative along the edges with “appropriate” conditions at junctions
(vertices). These conditions generalize the boundary conditions for
ODEs. Here, a lot of attention is devoted to describing what are the
“appropriate” conditions. Considering the quantum graph from the
point of view of waves propagating along edges and scattering at ver-
tices and other more advanced (but fundamental) topics are deferred
to Chapter 2.

FIGURE 1. A graph
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2 1. OPERATORS ON GRAPHS

1.1. Main graph notions and notation

We start by introducing some common graph notions and notation
used throughout the text. The reader is also referred to Appendix A
for these and some other notions from the graph theory.

A graph I' consists of a finite or countably infinite set of vertices
V = {v;} and a set £ = {e;} of edges connecting the vertices. The edges
are undirected. As we will see in Section 1.4, in the quantum graph
situation one can usually assume absence of loops and multiple edges,
since if these are present, one can break them into pieces by introducing
new intermediate vertices. We thus will be assuming mostly that loops
and multiple edges between vertices are not present. We will use the
notation E := |€| and V := |V| for the number of edges and vertices
correspondingly. The notation v € e will be taken to mean that v is
a vertex of the edge e. Two vertices u and v will be called adjacent
(denoted u ~ v) if there exists an edge connecting them. A graph I is
fully specified by its |V| x [V| adjacency matrix Ar. In the simplest
case when there are no loops or multiple edges, the elements of the
adjacency matrix are given by

(1.1.1) A,, = {1 if u ~ v,

0 otherwise.

More generally,
(1.1.2) Apw=|{e€€:ueeveel.

The degree d, of a vertex u is the number of edges emanating
from it, d, = >,y Aup. All degrees are assumed to be finite (local
finiteness of the graph).

We will denote by Dr the degree matrix, i.e. the diagonal |V|x |V
matrix with the diagonal entries d,:

(113) Du,v = d’u(su,va

where 6, , is the Kronecker delta

1ifu=w,
6u v = s
' 0 otherwise.
Sometimes it becomes necessary to consider directed edges. A graph
is called directed graph or digraph, if each of its edges is assigned a
direction. In other words, each edge has one origin and one terminal
vertex. Directed edges will be called bonds. The set of all bonds is

denoted by B. We will use the shorthand notation B := |B| for the
total number of bonds in a directed graph I'. The origin and terminal



