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Preface

The present book grew out of introductory lectures on the theory of functions
of several variables. Its intent is to make the reader familiar, by the discussion
of examples and special cases, with the most important branches and methods
of this theory, among them, e.g., the problems of holomorphic continuation,
the algebraic treatment of power series, sheaf and cohomology theory, and
the real methods which stem from elliptic partial differential equations.

In the first chapter we begin with the definition of holomorphic functions
of several variables, their representation by the Cauchy integral, and their
power series expansion on Reinhardt domains. It turns out that, in contrast
to the theory of a single variable, for n > 2 there exist domains G, G = C”
with G = G and G # G such that each function holomorphic in G has a
continuation on G. Domains G for which such a G does not exist are called
domains of holomorphy. In Chapter 2 we give several characterizations of
these domains of holomorphy (theorem of Cartan—Thullen, Levi’s problem).
We finally construct the holomorphic hull H(G) for each domain G, that is
the largest (not necessarily schlicht) domain over C" into which each function
holomorphic on G can be continued.

The third chapter presents the Weierstrass formula and the Weierstrass
preparation theorem with applications to the ring of convergent power
series. It is shown that this ring is a factorization, a Noetherian, and a Hensel
ring. Furthermore we indicate how the obtained algebraic theorems can be
applied to the local investigation of analytic sets. One achieves deep results
in this connection by using sheaf theory, the basic concepts of which are
discussed in the fourth chapter. In Chapter V we introduce complex manifolds
and give several examples. We also examine the different closures of C" and
the effects of modifications on complex manifolds.

Cohomology theory with values in analytic sheaves connects sheaf theory

v



Preface

with the theory of functions on complex manifolds. It is treated and applied
in Chapter VI in order to express the main results for domains of holomorphy
and Stein manifolds (for example, the solvability of the Cousin problems).

The seventh chapter is entirely devoted to the analysis of real differentia-
bility in complex notation, partial differentiation with respect to z, Z, and
complex functional matrices, topics already mentioned in the first chapter.
We define tangential vectors, differential forms, and the operators d, 4,
d". The theorems of Dolbeault and de Rham yield the connection with
cohomology theory.

The authors develop the theory in full detail and with the help of numerous
figures. They refer to the literature for theorems whose proofs exceed the
scope of the book. Presupposed are only a basic knowledge of differential
and integral calculus and the theory of functions of one variable, as well as a
few elements from vector analysis, algebra, and general topology. The book
is written as an introduction and should be of interest to the specialist and
the nonspecialist alike.

Gdttingen, Spring 1976

H. Grauert
K. Fritzsche
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CHAPTER 1

Holomorphic Functions

Preliminaries

Let C be the field of complex numbers. If n is a natural number we call the
set of ordered a-tuples of complex numbers the n-dimensional complex number
space:

C={3=(21,---,2,):z,€Cfor1 < v <n}.

Each component of a point 3 € C" can be decomposed uniquely into real
and imaginary parts: z, = x, + iy,. This gives a unique 1—1 correspondence
between the elements (z,,..., z,) of C" and the elements (x, ..., X,,
Y1, - -+, Yu) of R2", the 2n-dimensional space of real numbers.

C" is a vector space: addition of two elements as well as the multiplication
of an element of C" by a (real or complex) scalar is defined componentwise.
As a complex vector space C" is n-dimensional; as a real vector space it is
2n-dimensional. It is clear that the R vector space isomorphism between
C" and R?" leads to a topology on C": For 3 = (zy, ..., z,) = (x; + iyy, .
X, + iy,) e C" let

-y

n i/2 n 1/2
uan:=(z ) =(z<x,z+yz>) ,
k=1 k=1
lors = _max (b .

Norms are defined on C" by 3+~ [j3]| and 3+ ||3]|*, with corresponding
metrics given by

dist(31, 32): = [I31 = 32,

dist* (31, 32): = |31 — 3||*



1. Holomorphic Functions

In each case we obtain a topology on C" which agrees with the usual topology

for R?", Another metric on C", defined by |3|: = max |z]and dist'(3,, 3,):
k=1,..., n

= |31 — 32/, induces the usual topology too.

A region B = C" is an open set (with the usual topology) and a domain
an open, connected set. An open set G = C" is called connected if one of the
following two equivalent conditions is satisfied:

a. For every two points 34, 3; € G there is a continuous mapping ¢:[0, 1] —»

C* with 9(0) = 3,, ¢(1) = 32, and ([0, 1]) = G.

b. If B, B, « G are open sets with B, U B, = G, B, n B, = & and

Bl # g, then Bz = Q.

Definition. Let B — C" be a region, 3o € B a point. The set Cp(3,): =
{3 € B:3 and 3, can be joined by a path in B} is called the component of
3o in B.

Remark. Let B = C” be an open set. Then:

For each 3 € B, Cy(3) and B — Cp(3) are open sets.
. For each 3 € B, Cg(3) is connected.
From Cp(3,) N Cy(32) # & it follows that Cg(3,) = Cx(3,)-

B =) Cs3)

3eB
e. If G is a domain with 3 G — B, it follows that G = Cg(3).
f. B has at most countably many components.

The proof is trivial.
Finally for 3o € C" we define:
U,(30): = {3€C":dist(3, 30) < ¢},
U;(o): = {3 Cdist*(3, 30) < ¢},
U(30): = {3 € C:dist'(3, 30) < &}

apop

1. Power Series
Let M be a subset of C". A mapping f from M to C is called a complex
function on M. The polynomials
p(3) = E Q\q ..... Vi Zvl1 R Z:"’ avl ..... Vn € C’

are particularly simple examples, defined on all of C". In order to simplify
notation we introduce multi-indices: let v;, 1 < i < n, be non-negative
integers and let 3 = (zy, . . ., z,) be a point of C". Then we define:

n n
vi=(Vi,eons Vah [v|: = 21 v, 3= Hl N,
i= i=

With this notation a polynomial has the form p(3) = ) a,3".

v=

2



1. Power Series

Def. 1.1. Let 3, € C" be a point and for |v| > 0, a, be a complex number.

Then the expression
«©

Y a3 — 30)

v=0

is called a formal power series about 3,.

Now such an expression has, as the name says, only a formal meaning.
For a particular 3 it does not necessarily represent a complex number. Since
the multi-indices can be ordered in several ways it is not clear how the
summation is to be performed. Therefore we must introduce a suitable
notion of convergence.

Def. 1.2. Let3: = {v=(v,...,v,):v; > 0forl <i<n},and3 eC"beﬁxed.

We say that ) a,(3, — 30)" converges to the complex number c if for
v=0

each ¢ > 0 there exists a finite set I, < 3 such that for any finite set I
withlpc I <=3

Z a,3 — 30) —¢| <e

vel

[+ o]

One then writes Y, a,(3 — 30)" = ¢.
v=0

Convergence in this sense is synonymous with absolute convergence.

Def. 1.3. Let M be a subset of C", 3, € M, f a complex function on M. One

says that the power series Y. a,(3 — 30)" converges uniformly on M to
v=0
f(3) if for each & > O there is a finite set I, = J such that

Y.oaG—3) — @) <e

vel

for each finite I with I, = I = J and each 3e M.

@

Y a3 — 30)’ converges uniformly in the interior of a region B if the
v=0
series converges uniformly in each compact subset of B.

Def. 1.4. Let B — C" be a region and f be a complex function on B. f is
called holomorphic in B if for each 3, € B there is a neighborhood U =

U(3,) in B and a power series 2 a,(3 — 30)" which converges on U to
v=0
fG)-

Note that uniform convergence on U is not required. We show now why
pointwise convergence suffices.



1. Holomorphic Functions

Def. 1.5. The point set V = {r = (ry,...,r)eR"r, 20 for 1 <v < n}
will be called absolute space. 1:C" — V with ©(3): = (|z,], ..., |2,]) is the
natural projection of C" onto V.

V is a subset of R" and as such inherits the topology induced from R" to V
(relative topology). Then 7:C" — V is a continuous surjective mapping. If
B c Vis open, then 1~ }(B) < C"is also open.

Def. 1.6. LetteV,:= {r = (ry,...,r,) € R*:r, > 0}, 3,€ C" Then P (3,): =
{3€C":|z, — 20| < r, for 1 < k < n} is called the polycylinder about
30 with (poly-Jradius v. T = T(P): = {3e€ C"|z — z{?| = r,} is called
the distinguished boundary of P (see Fig. 1).

2l
) 7 // (T)
///
/ % el

Figure 1. The image of a polycylinder in absolute space.

P = P3,) is a convex domain in C" and its distinguished boundary is
a subset of the topological boundary dP of P. For n = 2 and 33 = O the
situation is easily illustrated: V is then a quadrant in R, t(P) is an open
rectangle, and 7(T) is a point on the boundary of t(P). Therefore

T = {3€C%zy| = ry, |22 = ra}
= {3=(r; €%, 1y €2)eC*0< 0, <21m,0 <0, <2nr}
is a 2-dimensional torus. Similarly in the n-dimensional case we get an
n-dimensional torus (the cartesian product of n circles).
If3,eC={3=0(4...,2)€Chz # 0for 1 <k < n}, then P,;: =
{3€ C"|z| < |27 = refor1 < k < n}isa polycylinder about 0 with radius
t=(Fp,.--»t)

Theorem 1.1. Let 3, € C. If the power series Y. a,3” converges at 3, then
v=0

it converges uniformly in the interior of the polycylinder P;,.



1. Power Series

PrROOF
1. Since the series converges at 3,, the set {a,3}:|v| > 0} is bounded.
Let M € R be chosen so that |av3§| <Mforallv.If3;eC*and 0 < g < 1

then q-3, €€ Let P*: =P,, For 3eP,[3|=|z" ... |jz" <
|q . 2(11)|v1 - |q . zs'l)lv" = qvl+---+vn . |z(11)|vx e IZE,”I”" = qlv! . |5\1»’, that
®© e o]
is, ¥ |a,|-13i] - 4" is 2 majorant of Y 4,3’ and therefore
v=0 v=0

®© @ ® 1 n
M‘ Z qvl+..-+v"=M.<z qV1>._...(Z q"n)=M.(1_:__)
v=0 vi=0 =0 q

The set I of multi-indices is countable, so there exists a bijection #:N, — 3.

Let b,(3): = dgq ' 3°™. Then ) b,(3) is absolutely and uniformly con-
n=0

o

vergent on P*. Given ¢ > O there is an noe N such that ) |b,3)| < ¢
n=ngt+1
on P*. Let Io: = ®({0,1,2,...,no}). If I is a finite set with I, < | = 3,
then {0, 1,...,n} = &7 (1), s0
@® K
Z bn(a) - ZI av3v ZO bn(a) - Z bn(a)
n=0 ve n=

ned®-1(I)
= ¥ b,(g)‘ < Y b <eforzeP.
ne®-i(I) n=no+1

o)

But then Z a,3’ is uniformly convergent in P*,

v=0
2. Let K < P, be compact. {F,.,:0 < g < 1} is an open covering of
P, , and thus of K. But then there is a finite subcovering {P, .,,..., P, ., }.
If we set g: = max(g,,...,4,), then K = P,.,, and P, is a P* such as
]

in 1). Therefore Z a,3’ is uniformly convergent on K, which was to be
v=0 .
shown. O

Next we shall examine on what sets power series converge. In order to
be brief we choose 3, = 0 as our point of expansion. The corresponding
statements always hold in the general case.

Def. 1.7. Anopenset B < C"is called a Reinhardt domainif3, e B=T,: =
17 17(3,) = B.

Comments. T, is the torus {3 e C":|z,| = |z{"|}. The conditions of defi-
nition 1.7 mean that 1~ '1(B) = B; a Reinhardt domain is characterized by
its image t(B) in absolute space.

Theorem 1.2. An open set B — C" is a Reinhardt domain if and only if there
exists an open set W < V with B = 1~ }(W).



I. Holomorphic Functions

ProOF

1. Let B=1"YW), W<V open. For 3eB, 7(3) € W; therefore
1 11(3) = t7 (W) = B.

2. Let B be a Reinhardt domain. Then B = 1~ *z(B) and it suffices to
show that t(B) is open in V. Assume that 7(B) is not open. Then there is a
point t, € t(B) which is not an interior point of 7(B) and therefore is a cluster
point of ¥V — 7(B). Let (r;) be a sequence in V' — 1(B) which converges to r,.
There are points 3;€ C" with r; = ©(3;), so that [z{?| = #{? for all j and
1 € p < n. Since (x;) is convergent there is an M € R such that || < M
for all j and p. Hence the sequence (3;) is also bounded. It must have a cluster
point 3¢, and a subsequence (3;) with lim 3; = 3,. Since 7 is continuous
7(30) = lim (3;) = lim t;, = r,. B is a Reinhardt domain; it follows that

30 € 77 (ro) = T™'7(B) = B. B is an open neighborhood of 3,; therefore
almost all 3;, must lie in B, and then almost all r; = (3;,) must lie in ©(B).
This is a contradiction, and therefore 7(B) is open. O

The image of a Reinhardt domain in absolute space is always an open set
(of arbitrary form), and the inverse image of this set is again the domain.

Def. 1.8. Let G = C" be a Reinhardt domain.
1. Gis called proper if

a. G is connected, and
b. 0eG.

2. G is called complete if
3leGnC"=>P3‘ < G

Figure 2 illustrates Def. 1.8. for the case n = 2 in absolute space.

Figure 2. (a) Complete Reinhardt domain; (b) Proper Reinhardt domain.



1. Power Series

For n = 1 Reinhardt domains are the unions of open annuli. There is no
difference between complete and proper Reinhardt domains in this case; we
are dealing with open circular discs.

Clearly for n > 1 the polycylinders and balls K = {3:|z,|> + - -+ +
|za|* < R?} are proper and complete Reinhardt domains. In general:

Theorem 1.3. Every complete Reinhardt domain is proper.

PrOOF. Let G be a complete Reinhardt domain. There exists a point 3, € G »
€, and by definition 0 € P,, = G. It remains to show that G is connected.

a. Let 3; € G be a point in a general position (i.e., 3, € G ~ €"). Then the
connecting line segment between 3, and 0 lies entirely within P, and hence
within G.

b. 3, lies on one of the “axes.” Since G is open there exists a neighborhood

U.,(31) © G, and we can find a point 3, € U (31) n €. Hence there is a path
in U, which connects 3, and 3,, and a path in G which connects 3, and 0.
Togcther they give a path in G which joins 3, and 0.

From (a) and (b) it follows that G is connected. a

ac

Let BGi) = Z a,3’ be a power series about zero. The set M <= C” on

v=0
which B(3) converges is called the convergence set of B(3). PB(3) always con-
verges in M and diverges outside M. B(P(3)): = M is called the region of
convergence of the power series B(3).

«©

Theorem 1.4. Let B(3) = Y. a,3* be a formal power series in C". Then the
v=0
region of convergence B = B(B(3)) is a complete Reinhardt domain. L(3)
converges uniformly in the interior of B.

PrOOF

1. Let 3, € B. Then U,(3,) = 3 C"|3 — 34| <&} = U (&) x - -+ x
U,(z") is a polycylinder about 3, with radius (¢, .. ., €). For a sufficiently
small ¢, U.(3,) lies in B. For k = 1,...,n we can find a zZP e U,(z") such
that |2§?] > |z{V}. Let 3,: = (z¥®,..., z{?). Then 3, ¢ B and 3, € P,,. For
each point 3, € B choose such a fixed point 32-

2. If3, € B, then there is a 3, € B with 3, € P,,. P(3) converges at 3,, there-
forein Py, (from Theorem 1.1). Hence P, < B.Since P, < P,and T, < P,
it follows that B is a complete Reinhardt domain.

3. Let Pj,: = P,, where 3, is chosen for 3, asin 1). Clearly B = |} P;.

neB
Now for each 3, select a ¢ with 0 < g < 1 and such that 33: = (1/g)3, lies
in B. This is possible and it follows that for each 3, € B B(3) is uniformly
convergent in Pj,. If K < B is compact, then K can be covered by a finite
number of sets P;,. Therefore P(3) converges uniformly on K. O

.



I. Holomorphic Functions

The question arises whether every complete Reinhardt domain is the
region of convergence for some power series. This is not true; additional pro-
perties are necessary. However, we shall not pursue this matter here.

Since each complete Reinhardt domain is connected, we can speak of
the domain of convergence of a power series. We now return to the notion
of holomorphy.

Let f be a holomorphic function on a region B, 3, a point in B. Let the

[

power series Y. a,(3 — 30)’ converge to f(3) in a neighborhood U of 3,.
v=0

Then there is a 3, € U with z(" # z{? for 1 < v < nand P, _,(30) = U.

Now let 0 <e¢ < min (12‘” z{®}). From Theorem 1.1 the series con-
v=1,...

verges uniformly on U 2(30) For each ve 3 one can regard a,(3 — 30)’ as a
complex-valued function on R?". This function is clearly continuous at 3,
and consequently the limit function is continuous at 3,. We have:

Theorem 1.5. Let B — C" be a region, and f a function holomorphic on B.
Then f is continuous on B.

2. Complex Differentiable Functions

Def. 2.1. Let B = C" be a region, f:B — C a complex function. f is called
complex differentiable at 3, € B if there exist complex functions 4,, ...,
4, on B which are all continuous at 3, and which satisfy the equality

£G) = fGo) + 3 (2, — 2%) A,(3)in B.

v=1

Differentiability is a local property. If there exists a neighborhood U =
U(3o) = B such that f|U is complex differentiable at 34, then f|B is complex
differentiable at 3, since the functions 4,(3) can be continued outside U in
such a way that the desired equation holds.

At 3, the following is true:

Theorem 2.1, Let B < C” be a region and f:B — C complex differentiable
at 3o € B. Then the values of the functions 4,, ..., A, at 3¢ are uniquely
determined.

PROOF. E,: = {3€C":z; = z{) for 4 # v} is a complex one-dimensional

plane.LetB,: = {{e C:(z",...,22,,{,22,,...,2") € E, n B}. f}(z,): =
(22, .. z‘°’ 15 2y, 294, ..., 289) defines a complex function on B,. Since
fis dlﬂ‘erentlable at 30, we have on B,

fiz)y =0, ., 22,2, 204, ..., 27)

= f(ao) + (ZV - zg’O)) AV(Z(IO)’ s ZV’ R ] Z;O))
= 1) + (z, — 27) - 43(z,).



2. Complex Differentiable Functions

Thus 4;(z,): = 4,9, ..., 2%y, z,, 29,,..., Z?) is continuous at z(?.
Therefore f(z,) is complex differentiable at z{>’ € C”, and 43(z{?) = 4,(30)
is uniquely determined. This holds for each v. O

Def. 2.2. Let the complex function f defined on the region B = C" be com-
plex differentiable at 3, € B. If f(3) = f(3o) + Y. (z, — Z%) 4,(3), then

v=1

we call 4,(3o) the partial derivative of f with respect to z, at 3,, and

write 4,(30) = 2 (30) = f(30) = /o)

Theorem 2.2. Let B — C" be a region and f complex differentiable at 3, € B.
Then f is continuous at 3,.

PrROOF. We have f(3) = f(30) + Y, (z, — z{%) 4,(3); the right side of this
v=1

equation is clearly continuous at 3,. |

Let B < C" be a region. f is called complex differentiable on B if f is
complex differentiable at each point of B.

Sums, products, and quotients (with nonvanishing denominators) of com-
plex differentiable functions are again complex differentiable. The proof is
analogous to the real case, and we do not present it here.

Theorem 2.3. Let B — C" be a region, f holomorphic in B. Then f is complex
differentiable in B.

PrOOF. Let 3, € B. Then there is a neighborhood U = U(3,) and a power

series Y. a,(3 — 30)” which in U converges uniformly to £(3). Without loss

v=0
of generality let 3, = 0. Then

. vi—1,
Y a3  =do..0+ 21" Y, Gy 20 Pz gn

v=0 viz1l
+ 220 ) Aoy ZR IR 4tz Z do...0,v,20" L.
va21 21
For now, this decomposition has only formal meaning. Choose a poly-
cylinder of the form P = U,(0) x --- x U,0) =« U(0)andapoint3; € T =
{3 C":|z,| = ¢}. Then P,, = P and 3, € U (if ¢ is chosen sufficiently small).

Y. a,3} converges, therefore Y |a,3}] also converges. Since 3, € €7, |zV] # 0
v=0 v=0

for all k. Therefore every subseries in the above representation at 3, also
converges absolutely and uniformly in the interior of P,. The limit func-
tions are continuous and are denoted by 44, ..., 4,. Since f(3) = fGo) +
2y 4:3) + -+ + z,* 4,(3), it follows that f is complex differentiableat 3,. O

9



1. Holomorphic Functions

From this proof we obtain the values of the partial derivatives at a point
30. For

f@ = Z ay,...y (23 — 2O - (2, — 2O

We obtain
J2,30) = a,0,..., 0>

£2aB0) = ao,.., 0,1

3. The Cauchy Integral

In this section we shall seek additional characterizations of holomorphic
functions.

Letr = (ry,...,r,) be a point in absolute space with r, # 0 for all v.
Then P = {3 e C":|z,| < r, for all v} is a nondegenerate polycylinder about
the origin and T = {3e C":7(3) = t} is the corresponding distinguished
boundary. It will turn out that the values of an arbitrary holomorphic
function on P are determined by its values on T.

First of all we must generalize the notion of a complex line integral.
Let K = {ze C:z = ré®, r > 0 fixed, 0 < 6 < 2x} be a circle in the com-
plex plane, f a function continuous on K. As usual one writes

fx f(2) dz = fo 2* f(re'®) - rie® db.

The expression on the right is reduced to real integrals by

Lb<p(t)dt: = J;bRe(p(t)dt + i'ﬁblm(p(t)dt.

Now let f = f(£) be continuous on the n-dimensional torus T =
{¢e C":1(&) = r}. Then h:P x T — C with

hG, O): = /@

(€1 —21) - Gn — z4)
is also continuous. We define
FW=GJJMMMw%Q
- (z) g (,lei:f (2;;:::;,:;;:’_ _

X 7y r @@t 4 .. 4R,

For each 3 € P, F is well defined and even continuous on P.

10




