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Preface

The objective of this book is to familiarize the reader with the recent
achievements of quantum field theory (henceforth abbreviated as QFT).
The book is oriented primarily towards condensed matter physicists but,
I hope, can be of some interest to physicists in other fields. In the last
fifteen years QFT has advanced greatly and changed its language and
style. Alas, the fruits of this rapid progress are still unavailable to the
vast democratic majority of graduate students, post-doctoral fellows, and
even those senior researchers who have not participated directly in this
change. This cultural gap is a great obstacle to the communication of
ideas in the condensed matter community. The only way to reduce this is
‘to have as many books covering these new achievements as possible. A
few good books already exist; these are cited in the General bibliography
at the end of the Preface. Having studied them I found, however, that
there was still room for my humble contribution. In the process of
writing I have tried to keep things as simple as possible; the amount of
formalism is reduced to a minimum. Again, in order to make life easier
for the newcomer, I begin the discussion with such traditional subjects
as path integrals and Feynman diagrams. It is assumed, however, that
the reader is already familiar with these subjects and the corresponding
chapters are intended to refresh the memory. I would recommend those
just starting their research in this area to read the first chapters in parallel
with some introductory course in QFT. There are plenty of such courses,
including the evergreen book by Abrikosov, Gorkov and Dzyaloshinsky.}

Why study QFT? For a condensed matter theorist as, I believe, for
other physicists, there are several reasons for studying this discipline.
The first is that QFT provides some wonderful and powerful tools for

+ I was trained with this book and thoroughly recommend it.

xi



Xii Preface

our research. The results achieved with these tools are innumerable;
knowledge of their secrets is a key to success for any decent theorist. The
second reason is that these tools are also very elegant and beautiful. This
makes the process of scientific research very pleasant indeed. I do not
think that this is a coincidence; it is my strong belief that aesthetic criteria
are as important in science as empirical ones. Beauty and truth cannot
be separated, because ‘beauty is truth realized’ (Viadimir Solovyev). The
history of science strongly supports this belief: all great physical theories
are at the same time beautiful. Einstein, for example, openly admitted
that ideas of beauty played a very important role in his formulation
of the theory of general relativity, for which any experimental support
remained minimal for many years. Einstein is by no means alone; the
reader is advised to read the philosophical essays of Werner Heisenberg,
whose authority in the area of physics is hard to deny. Aesthetics deals
with forms; it is not therefore suprising that a smack of geometry is felt
strongly in modern QFT. For example, the idea that a vacuum, being
an apparently empty space, has a certain symmetry, i.e.,, has a geometric
figure associated with it. In what follows we shall have more than one
chance to discuss this particular topic and to appreciate the fact that
geometrical constructions play a major role in the behaviour of physical
models.

The third reason for studying QFT is related to the first and the second.
QFT has the power of universality. Its language plays the same unifying
role in our times as Latin played in the times of Newton and Leibnitz.
Its knowledge is the equivalence of literacy. This is not an exaggeration:
the equations of QFT describe phase transitions in magnetic metals and
in the early universe, the behaviour of quarks and fluctuations of cell
membranes; in this language one can describe equally well both classical
and quantum systems. The latter feature is especially important. From
the very beginning I shall make it clear that from the point of view of
calculations, there is no difference between QFT and classical statistical
mechanics. Both these disciplines can be discussed within the same
- formalism. Therefore everywhere below I shall unify QFT and statistical
mechanics under the same abbreviation of QFT. This language helps one

To see a World in a grain of sand
And a heaven in a wild flower,

Hold infinity in the palm of your hand
And eternity in an hour. '
(William Blake)
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I hope that by now the reader is sufficiently inspired for the hard work
ahead, for which we must switch back to prose!

Let me now discuss the content of the book. One of its goals is to
help the reader to solve future problems in condensed matter physics.
These are more difficult to deal with than past problems, all the easy ones
having already been solved. What remains is difficult, but is interesting -
nevertheless. The most interesting, important and complicated problems
in QFT are those concerning strongly interacting systems. Indeed, most of
the progress over the past fifteen years has been in this area. One widely
known and related problem is that of quark confinement in quantum
chromodynamics (QCD). This still remains unresolved, as far as I am
aware. .A lesser known example is the problem of strongly correlated
electrons in metals near the metal-insulator transition. The latter problem
is closely related to the problem of high-temperature superconductivity.
Problems with the strong interaction cannot be solved by traditional
methods, which are mostly related to perturbation theory. This does not
mean, however, that it is not necessary to learn the traditional methods.
On the contrary, complicated problems cannot be approached without a
~ thorough knowledge of more simple ones. Therefore Part I of the book is
devoted to such traditional methods as the path integral formulation of
QFT and Feynman diagram expansion. It is not supposed, however, that
the reader will learn these methods from this book. As I have said before,
there are many good books which discuss the traditional methods, and
it is not the purpose of Part I to be a substitute for them, but rather to
recall what the reader has learnt elsewhere. Therefore discussion of the
traditional methods is rather brief, and is targeted primarily at the aspects
of these methods which are relevant to non-perturbative applications.

The general strategy of the book is to show how the strong interaction
arises in various parts of QFT. I do not discuss in detail all the existing
condensed matter theories where it occurs; the theories of localization
and the quantum Hall effect are omitted and the theory of heavy fermion
materials is discussed only very briefly. Well, one cannot embrace the
unembraceable! Though I do not discuss all the relevant physical models,
I do discuss all the possible scenarios of renormalization: there are only
three of them. First, it is possible that the interactions are large at the
level of a bare many-body Hamiltonian, but effectively vanish for the
low-energy excitations. This takes place in quantum electrodynamics in
(3+1) dimensions and in Fermi liquids, where scattering of quasiparticles
on the Fermi surface changes only their phase (forward scattering).
Another possibility is that the interactions, being weak at the bare
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level, grow stronger for small energies introducing profound changes
in the low-energy sector. This type of behaviour is described by so-
called ‘asymptotically free’ theories; among these are QCD, the theories
describing scattering of conducting electrons on magnetic impurities in
metals (the Anderson and the s-d models, in particular), models of
two-dimensional magnets, and many others. The third scenario leads
us to critical behaviour. In this case the interactions between low-
energy excitations remain finite. Such situations occur at the point of a
second-order phase transition. The past few years have been marked by
great achievements in the theory of two-dimensional second-order phase
transitions. A whole new discipline has appeared, known as conformal
field theory, which provides us with a potentially complete description of
all types of possible critical points in two dimensions. The classification
covers two-dimensional theories at a transition point and those quantum
(1 + 1)-dimensional theories which have a critical point at T = 0 (the
spin § = 1/2 Heisenberg model is a good example of the latter).

In the first part of the book I concentrate on formal methods; at several
points I discuss the path integral formulation of QFT and describe the
perturbation expansion in the form of Feynman diagrams. There is
not much ‘physics’ here; I choose a simple model (the O{N)-symmetric
vector model) to illustrate the formal procedures and do not indulge in
discussions of the physical meaning of the results. As I have already
said, it is highly desirable that the reader who is unfamiliar with this
material should read this part in parallel with some textbook on Feynman
diagrams. The second part is less dry; here I discuss some miscellaneous
and relatively simple applications. One of them is particularly important:
it is the electrodynamics of normal metals, where on a relatively simple
level we can discuss violations of the Landau Fermi liquid theory. In
order to appreciate this part, the reader should know what is violated, i.e.,
be familiar with the Landau theory itself. Again, I do not know a better
book to read for this purpose than the book by Abrikosov, Gorkov and
Dzyaloshinsky. The real fun starts in the third and the fourth parts, which
are fully devoted to non-perturbative methods. I hope you enjoy them!

Finally, those who are familiar with my own research, will perhaps be
surprised by the absence in this book of exact solutions and the Bethe
ansatz. This is not because I do not like these methods, but because I
do not consider them to be a part of the minimal body of knowledge
necessary for any theoretician working in the field. -

Alexei Tsvelik
Oxford



General bibliography

A. A. Abrikosov, Fundamentals of the Theory of Metals, North Holland (1988).

A. A. Abrikosov, L. P. Gorkov and L. E. Dzyaloshinsky, Methods of Quantum
Field Theory in Statistical Physics, revised edition ed. by R. A. Silverman,
New York: Dover (1963).

D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena,
World Scientific (1984).

P. W. Anderson, Basic Notions of Condensed Matter Physics,
Benjamin/Cummings (1984).

N, W. Ashcroft and N. D. Mermin, Solid State Physics, Holt-Saunders
International Eds (1983).

A. Auerbach, Interacting Electrons and Quantum Magnetism, New York:
Springer-Verlag (1994).

E. Fradkin, Field Theories of Condensed Matter Systems, Addison-Wesley (1991).

C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Cambridge University
Press (1989).-

S. Jain, Conformally invariant field theory in two dimensions, Int. J. Mod. Phys.
A, 3, 1759 (1988).

A. M. Polyakov, Field Theories and Strings, Harwood Academic (1988).

V. N. Popov, Functional Integrals and Collective Excitations, Cambridge
University Press (1990).

S. Sachdev, Low dimensional quantum field theories for condensed matter
physicists, Proc. of the Trieste Summer School 1992, World Scientific, to be
published.

B. Schutz, Geometrical Methods in Mathematical Physics, Cambridge University
Press (1980).

F. Wilczek, Fractional Statistics and Anyon Superconductivity, World Scientific
(1990).

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, second edition,
Oxford University Press (1993).

Conformal Invariance and Applications to Statistical Mechanics, ed. by C.
Itzykson. H. Saleur and J.-B. Zuber, World Scientific (1988).

Les Houches 1988, Fields, Strings and Critical Phenomena, Session XLIX, ed. by
E. Brezin and J. Zinn-Justin, North Holland (1990).



Acknowledgements

I gratefully acknowledge the support of the Landau Institute for Theo-
retical Physics, in whose stimulating environment I worked for several
wonderful years. My thanks also go to the University of Oxford, and to
its Department of Physics in particular, the support of which has been
vital for my work. I also acknowledge the personal support of David
Sherrington, Boris Altshuler, John Chalker, David Clarke, Piers Cole-
man, Lev Ioffe, Igor Lerner, Alexander Nersesyan, Jack Paton, Paul de
Sa and Robin Stinchcombe. Brasenose College has been a great source of
inspiration to me since I was elected a fellow there, and I am grateful to
my college-fellow John Peach who gave me the idea of writing this book.
Finally, I would like to extend special thanks to the college cellararius
Dr. Richard Cooper for irreproachable conduct of his duties.



Contents

Preface
General bibliography
Acknowledgements

Introduction to methods

1 QFT: language and goals

2 Path integrals

3 Definitions of correlation functions

4 Free bosonic field in an external field

5 Perturbation theory; Feynman diagrams

6 Calculation methods for diagram series

7 Renormalization group procedures

8 O(N)-symmetric vector model below the transition point

9 Nonlinear sigma models in two dimensions

10  O(3)-nonlinear sigma model in the strong coupling limit
Fermions

11  Path integrals and Wick’s theorem for fermions

12 Electrodynamics in metals ‘

13 Relativistic fermions

14  Aharonov-Bohm effect
Strongly fluctuating spin systems

Introduction

15  Schwinger-Wigner quantization procedure

16  O(3)-nonlinear sigma model in (2 + 1) dimensions

17  Order from disorder

18  Jordan-Wigner transformation for spin § = 1/2 models

19  Majorana representation for spin S = 1/2 magnets

20  Path integral representations

ix

101
109
130
141
151
153
159
168
174
183
191
197



Contents

X
Physics in the world of one spatial dimension
Introduction ,
21  Model of the free bosonic massless scalar field
22  Relevant and irrelevant fields
23  Kosterlitz-Thouless transition
24 Conformal symmetry
25  Definition of conformal invariance
26  Ising model
27  Spin § = 1/2 Heisenberg chain
28  One-dimensional fermions with spin
29  Katz-Moody algebras
30 Wess-Zumino-Novikov-Witten model
31  Gauge fixing in non-Abelian theories
32  Spin § = 1 Heisenberg chain
33 Kondo chain-
34  Conformal theory cookbook
35 Conclusion

Index

200
211
213
220
227
236
243
257
264
275
288
297
306
310
315
321
325
330



Part one
Introduction to methods






1
QFT: language and goals

Under the calm mask of matter
The divine fire burns.
(Vladimir Solovyev)

The reason why the terms ‘quantum field theory’ and ‘statistical me-
chanics’ are used together 5o often is related to the essential equivalence
between these twe disciplines. Namely, a quantum field theory of a D-
dimensional system can be formulated as a statistical mechanics theory
of a (D + 1)-dimensional system. This equivalence is a real godsend for
anyone studying these things. Indeed, it allows one to get rid of non-
commuting operators and to forget about time-ordering, which seem to
be characteristic properties of quantum mechanics. Instead one has a way
of formulating the quantum field theory in terms of ordinary commuting
functions, more or less conventional integrals, etc.

Before going into formal developments I shall recall the subject of
quantum field theory (QFT). Let us consider first what classical fields
are. To begin with, they are entities expressed as continuous functions
of space and time coordinates (x,t). A field ®(x,t) can be a scalar, a
vector (like the electromagnetic field represented by the vector potential
(¢, A)), or a tensor (like the metric field gg in the theory of gravitation).
Another important thing about fields is that they can exist on their
own, ie., independent of their ‘sources’ — charges, currents, masses, etc.
Translated to the language of theory, this means that a system of fields
has its own action S[®] and energy E[®]. Using these quantities and
the general rules of classical mechanics one can write ‘down equations of
motion for the fields.
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Example

As an example consider the derivation of Maxwell’s equations for an
electromagnetic field in the absence of any sources. I use this example
in order to introduce some valuable definitions. The action for an
electromagnetic field is given by

=i 3 2 _ 1y2 1.1
S 8n_[dtdx[E H"] (L.1)

where E and H are the electric and the magnetic fields, respectively. These
fields are not independent, but are expressed in terms of the potentials:
10A

E=—V¢+E.§

H=VxA (12)

The relationship between (E, H) and (¢, A) is not unique; (E, H) does not
change when the following transformation is applied:
10y

G

A—A+Vy (1.3)

This symmetry is called gauge symmetry. In order to write the action as
a single-valued functional of the potentials, we need to specify the gauge.
I choose the following one:

=0

Substituting (1.2) into (1.1) we get the action as a functional of the vector
potential: ‘

S = % f dtdx [é(atA)2 —(V % A)Z] (1.4)

In classical mechanics particles move along trajectories with minimal
action. In field theory we deal not with particles, but with configurations
of fields, i.e., with functions of coordinates and time A(t, x). The general-
ization of the principle of minimal action for fields is that fields evolve in
time in such a way that their action is minimal. Suppose that Ag(z, x) is
such a configuration for the action (1.4). Since we claim that the action
achieves its minimum in this configuration, it must be invariant with
respect to an infinitesimal variation of the field:

A=Ap+JA
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Substituting this variation into the action (1.4), we get:
oS = 21;; / ded®x[c~28,A00,0A — (V X Ag)(V X JA)] + O(5A%)  (1.5)
The next essential step is to rewrite S in the following canonical form:
88 = / dtd*x8A(t, X)F[Ao(t, X)] + O(5A?) (1.6)

where F[Ao(z, x)] is some functional of Ay(t,x). By definition, this expres-
sion determines the function

_ s
T A

— the functional derivative of the functional S with respect to the function
A. Let us assume that A vanishes at infinity and integrate Eq. (1.5) by
parts:

oS = —% j dtd3x{c"26,2Ao(t, x) — [(V x. V) x Ag(t,x)]}0A(t,x) (1.7)

Since S = 0 for any SA, the expression in the curly brackets (ie., the
functional derivative of S) vanishes. Thus we get the Maxwell equation:

c2PA—(VxXV)XxA=0 (1.8)

Thus Maxwell’s equations are the Lagrange equations for the action (1.4).

From Maxwell’s equations we see that the field at a given point is
determined by the fields at the neighbouring points. In other words the
theory of electromagnetic waves is a mechanical theory with an infinite
number of degrees of freedom (i.e., coordinates): these degrees of freedom
are represented by the fields which are present at every point and coupled
to each other. In fact it is quite correct to define classical field theory as
the mechanics of systems with an infinite number of degrees of freedom.
By analogy, one can say that QFT is just the quantum mechanics of
systems with an infinite number of coordinates.

There is a large class of field theories where the above infinity of
coordinates is trivial. In such theories one can redefine the coordinates
in such a way that the new coordinates obey independent equations
of motion. Then an apparently complicated system of fields decouples
into an infinite number of simple independent systems. This is certainly
possible to do for so-called linear theories, a good example of which is
the theory of the electromagnetic field (1.4); the new coordinates in this
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Fig. 1.1. Maxwell’s equations as a mechanical system.

case are just coefficients in the Fourier expansion of the field A:

1 ikx
A= zk: a(k, t)e (1.9)
Substituting this expansion into Eq. (1.8) we obtain equations for the
coefficients, which are just the Newton equations for harmonic oscillators
with frequencies +clk|:

afai(k, 1) — (ck)? (éij — k—l:‘zl-) a;k,t)=0 (1.10)

where a = (a,,a;,a3).

The meaning of this transformation becomes especially clear if we
confine our.system of fields in a box with linear dimensions L;(i = 1, ..., D)
and with periodic boundary conditions. Then our k-space becomes

discrete:

2n
ki = En;

(n; are integer numbers). Thus the continuous theory of the electro-
magnetic field in real space looks like a discrete theory of independent
harmonic oscillators in k-space. The quantization of such a theory is
quite obvious: one should quantize the above oscillators and get a quan-
tum field theory from the classical one. Things are not always so simple,
however. Imagine that the action (1.4) has quartic terms in derivatives
of A, which is the case for electromagnetic waves propagating through a



