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Preface

This book is intend to give an introduction to the theory of stochastic age-
structured population dynamic system which has received strong attention in recent
years because of its interesting structure and its usefulness in various applied fields.

The motivation for studying stochastic age-structured population dynamic sys-
tem comes originally from biomathematics theory. Biomathematics, a newly emerged
interdisciplinary subject, researches the quantitive feature and spatial pattern of life
body and bio-system. Biomathematics also resolve problem of bioscience by the-
ories and methods in mathematics. The 21st century is the century of bioscience,
the century of information science and the century of microelectronics technology,
which is also the century of all sciences gradual transform from quantitive research
to qualitative research. With the features of bioscience and quantitative science,
the basis of a great deal of information and computer technique as tool, the mathe-
matical modeling of biological systems is evolving into an integral part of biological
experiments.

The study of biomathematics started in early 20s, which was known as the golden
age of theoretical ecologis solutions, so the discussion of the numerical method of
stochastic population system to become the field of mathematical biological hot is-
sue. The book mainly study the numerical method of the population with a variety
of noise models. Including the author’s research. The given numerical methods
and the conclusions provide new ideas and theoretical basis for stochastic evolution-
type partial differential equations numerical calculation, but also to the value of the
stochastic population system provides a reliable method. Provide a strong basis
to explore epidemics, ecological environment and the protection of the population.
Since the dynamics method study of the life sciences was first proposed, and the
logistic model, prey model and infectious diseases model was considered to be the
most famous model. Subsequently, on the basis of the modeling, age structure,
time-lag, migration, random interference of environment, intraspecific competition
for resources, interspecific competition for resources have been considered. With the
development of computer technology of the sixties and seventies years, the aware-
ness of the seriousness of the ecological crisis to promote the further development

of mathematical biology. To solve the five major worldwide problem: resources,
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energy, environment, population and food are also related on Ecology. For example,
to predict behavior of the system and make the best decisions of governance, also
need the help of systems analysis and computer simulation. Thus, using computer
simulation to study the complex ecosystem has become the main method of systems
ecology research. The dynamic model of population and community has also been
further developed, taking into account the detailed behavior of space consistency,
stability, and vagueness, disagreement. Biomathematics’ field of study is carried out
on the human will face such as the lack of natural resources and energy, environmen-
tal pollution, overpopulation, disease and health is complex and difficult problem
in the 21st century. Therefore, how to establish appropriate ecological model and

numerical simulation are particularly important in the field of biomathematics.

In recent years, the study of taking into account the random disturbance on
the population model system have been being attracted widely attention. In ge-
neral, the majority of stochastic population system have no exact analytical solution
This book focuses on the latest research results of the numerical calculation of bio-
mathematical research in stochastic population system, which is characterized by
considering the effect of random noise to the the population system, and the nume-
rical method and convergence is studied. To maintain systematic and easy to read,
we first give the existence and uniqueness of the solution; followed by numerical
calculation. Combined with their own research, by the main line to the value of
single-species model, numerical methods of the various types of single-species model
is clarified. Discuss the numerical calculation for stochastic population system with
the Brownian motion, fractional Brownian motion, Markovian process and Poisson

process.

The book is organized as follows. As an introduction, we present several the-
ory of stochastic processes, Brownian motion, Ité’s formula and basic inequalities
in the first part. The second part have three chapters, which introduced popula-
tions system model systemically, study the existence and uniqueness of solutions
of stochastic age dependent population. The third part of a total of seven chap-
ters, focuses on the numerical calculation of stochastic age dependent population.
According to the Euler method and the semi-implicit Euler method, stochastic age-
dependent population was discussed, a sufficient condition for the convergence of the
numerical approximation solution to the analytic solution and Exponential stability
is given,and by the large number of numerical examples to verify the effectiveness
of the algorithm, solving construct a stable algorithm for random population devel-

opment system. There are three chapters of Part IV, mainly discussed the value of
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stochastic delay neural networks.
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Chapter 1

Introduction

1.1 Introduction

Systems in many branches of science and industry are often perturbed by various
types of environmental noise. For example, conside the simple population growth

model

%t("') = a(t)N(t) (1.1)

with intinal value N(0) = Ny, where N(t) is the size of the population at time ¢
and a(t) is the relative rate of growth. It might happen that a(t) is not completely

known, but subject to some random environmental effects. In other words,
a(t) = r(t) + o(t) “noise”,

so equation (1.1) becomes

dAN(t)

& = TON® +o(ON () noise”.

That is, in form of integration,
t t
N(t) = N0+/ r(s)N(s)d3+/ o(s)N(s)“noise”ds. (1.2)
0 0

The questions are: What is the mathematical interpretation for the “noise” term
t

and what is the integration / o(s)N(s)“noise”’ ds?
0
It turns out that a reasonable mathematical interpretation for the “noise” term
is the so-called white noise B(t), which is formally regarded as the derivative of a

. dB(t
Brownian motion B(t), i.e. B(t) = J So the term “noise”dt can be expressed

dt
as B(t)dt = dB(t), and

/a(s)N(s)“noise”ds=/ a(s)N(s)dB(s). (1.3)
0 0
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If the Brownian motion B(t) were differentiable, then the integral would have no
problem at all. Unfortunately, we shall see that the Brownian motion B(t) is nowhere
differentiable hence the integral can not be defined in the ordinary way. On the other
hand, if o(t)N(t) is a process of finite variation, one may define the integral by

t

t
/0 o (s)N(s)dB(s) = o (t)N (£) B(t) — /U B(s)d[o(s) N (s)].

However, if o(t)N(t) is only continuous, or just integrable, this definition does not
make sense. To define the integral, we need make use of the stochasticnature of
Brownian motion. This integral was first defined by K. It6 in 1949 and is now
known as Ito stochastic integral. The main aims of this chapter are to introduce
the stochastic nature of Brownian motion and to define the stochastic integral with
respect to Brownian motion.

To make this book self-contained, we shall briefly the basic notations of proba-
bility theory and stochastic processes. We then give the mathematical definition
theory and stochastic processes. We then give the mathematical definition of Brow-
nian motions and introduce their important properties. Making use of Brownian
motion, we proceed to define the stochastic integral with respect to Brownian mo-
tion, we proceed to define the stochastic integral with respect to Brownian motion
and establish the well-known It6’s formula. As the applications of Itd’s formula, we
establish several moment inequalities e.g. the Burkholder-Davis-Gundy inequality
for the stochastic integral as well as the exponential martingale inequality. We shall

finally show a number of well-known integral inequalities of Gronwall type.

1.2 Basic notations of probability theory

Probability theory deals with mathematical models of trials whose outcomes depend
on chance. All the possible outcomes—the elementary events are grouped together
to form a set £ with typical element w € Q. Not every subset of € is in general
an observable or interes-ting event. So we only group these observable or interest-
ing events together as a family F of subsets of Q. For the purpose of probability
theory,such a family F should have the following properties:

(i) @ € F, where @ denotes the empty set;

(ii) A€ F = A% € F, where A® = Q — A is the complement of A in €;

(iii) {As}is1 C F = U A; € F.

=1
A family F with these three properties is called a o-algebra. The pair (w, F) is

called a measurable space, and the elements of F is henceforth called F-measurable
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sets instead of events. If C is a family of subsets of (), then there exists a smallest
- o-algebra o(C) on © which contains C. This o(C) is called the o-algebra generated
by C. If @ = R? and C is the family of all open sets in R?, then B = ¢(C) is called
the Bored o-algebra and the elements of B? are called the Borelsets.

A real-valued function X : Q — R is said to be F-measurable if

{w: X(w)<a}eF for all aeR.

The function X is also called a real-valued (F-measurable)random variable. An
Ré-valued function X (w) = (X;(w), -+, Xa(w))T is said to be F-measurable if all
the elements X; are F-measurable. Similarly, a d x m-matrix-valued function X (w) =
(Xij(w))dxm is said to be F-measurable if all the elements X;; are F-measurable.
The indicator function 74 of a set A C €2 is defined by

Ia(w) :{ 1, for w e A,
0, for w¢ A
The indicator function I4 is F-measurable if and only if A is an F-measurable set,
ie. A e F. If the measurable function is then called a Borel measurable function.
More generally, let (£2/, F’) be another measurable space. A mapping X : Q@ — Q' is
said to be (F,F’)-measurable if

{w: X(w)e A} eF for all A" € F.

The mapping X is then called an 2'-valued (F,F’-meadsurable) (or simply, F-
measurable) random variable. Let X :  — R% be any function. The o-algebra o (X)
generated by X is the smallest a—algebra on §) containing all the sets {w : X (w) € U},
U C R? open. That is

o(X)=c({w: X(w) € U} : U C R open).

Clearly, X will then be o(X)-measurable and o(X) is the smallest o-algebra with
this property. If X is F-measurable, then o(X) C F,i.e. X generates a sub-c-algebra
of F. If X, :i € I is collection if R%-valued functions , define

o(X;:iel)=0o (UU(Xi))

icl
which is called the o-algebra generated by X; :¢ € I. It is the smallest o-algebra

with respect to which every X; is measurable. The following results is useful. It is

a special case of a result sometimes called the Doob-Dynkin lemma.



