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Preface

This volume is devoted to the foundations of the theory of moduli of
algebraic curves defined over the complex numbers. The first volume was
almost exclusively concerned with the geometry on a fixed, smooth curve. At
the time it was published, the local deformation theory of a smooth curve
was well understood, but the study of the geometry of global moduli was in
its early stages. This study has since undergone explosive development and
continues to do so. There are two reasons for this; one predictable at the time
of the first volume, the other not.

The predictable one was the intrinsic algebro-geometric interest in the
moduli of curves; this has certainly turned out to be the case. The other is the
external influence from physics. Because of this confluence, the subject has
developed in ways that are incredibly richer than could have been imagined
at the time of writing of Volume I.

When this volume, GAC II, was planned it was envisioned that the cen-
terpiece would be the study of linear series on a general or variable curve,
culminating in a proof of the Petri conjecture. This is still an important part
of the present volume, but it is not the central aspect. Rather, the main
purpose of the book is to provide comprehensive and detailed foundations
for the theory of the moduli of algebraic curves. In addition, we feel that a
very important, perhaps distinguishing, aspect of GAC II is the blending of
the multiple perspectives—algebro-geometric, complex-analytic, topological,
and combinatorial—that are used for the study of the moduli of curves.

It is perhaps keeping this aspect’in mind that one can understand our
somewhat unusual choice of topics and of the order in which they are pre-
sented. For instance, some readers might be surprised to see a purely algebraic
proof of the projectivity of moduli spaces immediately followed by a detailed
introduction to Teichmiiller theory. And yet Teichmiiller theory is needed
for our subsequent discussion of smooth Galois covers of moduli, which in
turn is immediately put to use in our approach to the theory of cycles on
moduli spaces. Besides, all the above are essential tools in Kontsevich’s proof
of Witten’s conjecture, which is presented in later chapters. Concerning this,
the main motivation of our choice of presenting Kontsevich’s original proof
instead of one of the several more recent ones is—in addition to the great
beauty of the proof itself—a desire to be as self-contained as possible. This
same desire also motivates in part the presence, at the beginning of the book,
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viii Preface

of two introductory chapters on the Hilbert scheme and on deformation the-
ory.
In the Guide for the Reader we will briefly go through the material we
included in this volume. Among the topics we did not cover are the theory
of Gromov—Witten invariants, the birational geometry of moduli spaces, the
theory of moduli of vector bundles on a fixed curve, the theory of syzygies
for the canonical curve, the various incarnations of the Schottky problem
together with the related theory of theta function, and the theory of stable
rational cohomology of moduli spaces of smooth curves. Some of these topics
are covered by excellent publications like [14] for syzygies and [532] for the
birational geometry of moduli spaces. On other topics, like the intersection
theory of cycles or the theory of the ample cone of moduli spaces of stable
curves, we limited ourselves to the foundational material.

Much of Volume I was devoted to the study of the relationship between
an algebraic curve and its Jacobian variety. In this volume there is relatively
little emphasis on the universal Jacobian or Picard variety and discussion
of the moduli of abelian varieties. The latter is a vast and deep subject,
especially in its arithmetic aspect, that goes well beyond the scope of this
book.

In some instances, important topics, such as the Kodaira dimension of
moduli spaces of stable curves, the theory of limit linear series, or the irre-
ducibility of the Severi variety, have appeared elsewhere, specifically in the
book Moduli of Curves by Joe Harris and Ian Morrison [352]. This is in fact
a good opportunity to thank Joe and Ian for their kind words in the intro-
duction of their book. We believe that our respective books complement each
other, and we encourage our readers to benefit from their work.

In the bibliographical notes we try to point the reader to the most signif-
icant developments, not covered in this volume, of which we were aware at
the time of writing. In fact, we view our bibliography and our bibliographical
notes as, potentially, an ongoing project.

There is virtually no area in the theory of moduli of curves where the con-
tribution of David Mumford has not been crucial. Our first debt of gratitude
is therefore owed to him.

There is a long list of people to whom we would also like to express our
gratitude. The first one is Joe Harris, whose generous contribution consists
of approximately half of the exercises in this book.

During the long years of preparation of this volume, the following peo-
ple have greatly contributed with ideas, comments, remarks, and corrections:
Gilberto Bini, Alberto Canonaco, Alessandro Chiodo, Herb Clemens, Ed-
uardo Esteves, Domenico Fiorenza, Claudio Fontanari, Jeffrey Giansiracusa,
John Harer, Eduard Looijenga, Marco Manetti, Elena Martinengo, Gabriele
Mondello, Riccardo Murri, Filippo Natoli, Giuseppe Pareschi, Gian Pietro
Pirola, Marzia Polito, Giulia Sacca, Edoardo Sernesi, Roy Smith, Lidia Stop-
pino, Angelo Vistoli. To all of them we extend our heartfelt sense of gratitude.
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We also wish to thank the students in the courses that we taught out of
draft versions of parts of the book, who also offered a number of suggestions
for improvements.

The first two authors are also grateful to several institutions which hosted
them during the preparation of this volume, in particular the Courant In-
stitute of New York University, Columbia University, the Italian Academy
in New York, IMPA in Rio de Janeiro, the Institut Henri Poincaré in Paris,
the Accademia dei Lincei in Rome, and above all the Institute for Advanced
Study. Special thanks go to Enrico Bombieri, who was instrumental in ar-
ranging the first two authors’ stays at the Institute. It was through his good
offices that they were supported on one of these stays as “Sergio Serapioni,
Honorary President, Societa Trentina Lieviti — Trento (Italy) Members.”

We gratefully acknowledge financial support provided by the PRIN projects
“Spazi di moduli e teoria di Lie” funded by the Italian Ministry for Education
and Research, and by the EAGER project funded by the European Union.

Rome, Pavia, Princeton, 2010



- . : . et =

v e iy hs Sl ol e s n il e el 1 B
qﬂ'l'ﬂnll'.llnihlul e i o ] S ol L raxa AL
Arercaraml 1

R L L BT SS TR hid‘r-r-ll'mrnd-hl:l-nh-'ln
]l La~ra' L bl el - -i'l.ll '=II il gy g
-|r|--.'-r.-.|-="|j:-|:||:|- Jei = o el
Sty e B o1 e sl B II.HIH',.IFTH-Mﬁ
CEEEE B | .i.rh;-.! 4 fi e % Sl sk e, i
BENE i o' --h::'l:ul Bl puaf
T -l.ll-l'rfi-pﬂlnu-d s --.-l-'q-lmn-rm sl g
- ey i i i S h i 1 L Lrancan v -
rh gl Syl _,u-n.l'-l-.r-'t-.u-ﬁ = el

e g S gl g gttt o d itk ol Borm o KT
L R FL R | plh!u-l i’k = Erle B aey—

eua-mpﬂqq#mnmqmﬁ -] m) b gl b
d|H a2 r-|'l.r']'..l.rl|l|'! II:IH

RIEGEHR: FEEKEAELE:  www. ertongbook. com



Guide for the Reader

The first four chapters of this volume, that is, Chapters IX, X, XI, and
XII, are devoted to the construction of the moduli space M, ,, of stable n-
pointed curves of genus g. The three main characters in these chapters are:
nodal curves, deformation theory, and Kuranishi families.

Chapter IX gives a self-contained introduction to the Hilbert scheme,
explaining the various implications of the concept of flatness and highlighting
the case of curves as, for instance, in Mumford’s example.

Nodal curves are studied in Chapter X. There, we establish the Stable
Reduction Theorem (4.11), the theorem on isomorphisms of families of stable
curves (5.1), and, in Section 6, the basic constructions of clutching, projec-
tion, and stabilization. All these results are fundamental in the construction
of the moduli space of stable curves and in the study of its boundary.

The Kodaira—Spencer deformation theory is ubiquitous in this book. Its
first appearance is in Section 5 of Chapter IX. It presents itself in its most
classical guise as the study of the characteristic system which, in modern
terms, translates into the study of the tangent space to the Hilbert scheme.
The deformation theory of nodal curves, and in particular of stable ones, is
the central theme of Chapter XI. There, (5.10) is the key exact sequence
describing the tangent space to the local deformation space of a nodal curve.
The concept of Kuranishi family is pivotal in the entire volume. The (bases
of) Kuranishi families provide the analytic charts for the atlases of moduli
stacks of curves. Kuranishi families are constructed by slicing the Hilbert
scheme H, 5, of v-log-canonical embedded stable n-pointed curves of genus
g, transversally with respect to the orbits of the natural projective group
acting on Hy , ., and then restricting to these slices the universal family of
curves over Hy , ., (see Theorem (6.5) and the key Definitions (6.7) and (6.8)
in Chapter XI).

The moduli space M., is then constructed in Chapter XII. We exhibit
Hg,n first as an analytic space, then as an algebraic space, and finally as
an orbifold and as a Deligne-Mumford stack. Actually, one of the purposes
of this chapter, besides the construction of moduli spaces, and the study of
the first properties of their boundary strata, is to give an utilitarian and
essentially self-contained introduction to the theory of stacks. This is done
in Sections 3-9.



xviii Guide for the Reader

Several topics treated in the first four chapters are not directly aimed at
the construction of moduli spaces. Specifically:

- Section 9 of Chapter IX deals with the universal property of the Hilbert
scheme with respect to continuous families of projective manifolds. Its
natural continuation is Section 7 of Chapter XI, where it is shown that
the universal property of the Kuranishi family holds also in this context
of continuous families of Riemann surfaces. These results will be essential
in our presentation of Teichmiiller theory in Chapter XV.

- Section 9 of Chapter X is devoted to the Picard—Lefschetz theory of van-
ishing cycles describing the topological picture of a family of smooth
curves degenerating to a nodal one.

- Section 8 of Chapter XI deals with the classical theory of the period map
for Riemann surfaces and its infinitesimal behavior.

- In Section 9 of the same chapter we study the positivity properties of the
Hodge bundle from the viewpoint of its curvature.

- In the final section of Chapter XI we present Kempf’s study of deforma-
tions of the symmetric product of a curve leading to the proof of Green’s
theorem about quadrics passing through the canonical curve (cf. Theorem
(4.1) in Chapter VI).

In Chapter XIII we present the theory of line bundles on moduli stacks
of curves, developing the necessary theory of descent. In the first two sections
we introduce the Hodge bundle, the point-bundles £;, the tangent bundle to
the stack M, ,, the canonical bundle, the stack divisors corresponding to
the codimension one components of its boundary, and the normal bundles
to the various boundary strata. The following Section 4 is devoted to the
theory of the determinant of the cohomology. This theory is well suited to
producing line bundles on moduli stacks, and, at the end of this section, we
treat the boundary of moduli as a determinant, leading to important formulae
of “restriction to the boundary” as in Lemma (4.22), Proposition (3.10), and
formula (4.31). In Section 5 we present the theory of the Deligne pairing,
we introduce Mumford’s x; class, and we give a concrete version, “without
denominators,” of the Riemann-Roch theorem for line bundles on families
of nodal curves (cf. Theorem (5.31)). In Section 6 we compare the various
notions of Picard group for moduli spaces of curves. Section 7 is devoted to
Mumford’s remarkable idea that the Grothendieck-Riemann-Roch theorem
can be effectively used to produce relations among classes in the moduli
spaces of curves. There we prove the key formula k; = 12\ + ¢ — § for
Mumford’s class and the formula K37 = = 13A+1—26—0; g for the canonical
class. In the final Section 8 we study the Picard group of the closure Fg cM,
of the hyperelliptic locus.

The fact that Hy,n is a projective variety (and therefore a scheme) is
established in Chapter XIV. To prove this we use a mixture of two tech-
niques that are of independent interest. The first one is Mumford’s geometric
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invariant theory. In Sections 2 and 3, we prove the Hilbert—-Mumford crite-
rion of stability (Proposition (2.2)), and we use this criterion to prove the
stability of the v-log-canonically embedded smooth curves, viewed as points
in the appropriate Hilbert scheme. We then take a sharp turn and use sta-
bility of smooth curves to find numerical inequalities among cycles in moduli
spaces and, consequently, positivity results. Using the same techniques, we
then prove the ampleness of Mumford’s class x; and hence the projectivity
of My .

Chapter XV gives a self-contained treatment of Teichmiiller space and
of the modular group. The Teichmiiller space 7g is constructed in Section 2,
as a complex manifold, by patching together bases of Kuranishi families. We
then examine the natural map @ : B — 75 from the unit ball, in the space
of quadratic differentials on the reference Riemann surface S, to the Te-
ichmiiller space 7g. The continuity of this map is an immediate consequence
of the results proved in Section 7 of Chapter XI about the universal property
of Kuranishi families with respect to continuous families of Riemann sur-
faces. To prove the injectivity of ® we first study, in Section 5, the geometry
associated to quadratic differentials and then prove, in the following section,
Teichmiiller’s Uniqueness Theorem. As we explain at the end of Section 4, the
fact that ® is a diffeomorphism follows readily from Teichmiiller’s Uniqueness
Theorem and from the elementary theory of the Beltrami equation. In the
last section of this chapter we introduce a bordification of Teichmiiller space
which is very close to the one defined in terms of Fenchel-Nielsen coordinates.
Although this bordification is interesting in itself, its only use in our book is
in Chapter XIX, where we present Kontsevich’s combinatorial expression for
the point-bundle classes ;.

Teichmiiller space can be thought of as the space representing a rigidifica-
tion of the moduli functor in which each Riemann surface C' comes equipped
with a marking (i.e., the homotopy class of a diffeomorphism onto a fixed
reference surface). This marking eliminates the automorphism group of C,
with the result that Teichmiiller space is smooth. The same process of rigidi-
fication of the moduli functor can be performed algebraically by considering,
for example, pairs consisting of a Riemann surface and the group of points
of order n in its Jacobian. More generally, one is looking for finite index nor-
mal subgroups A of the mapping class group I'g,,. Then 7, /A is a Galois
cover of M, with Galois group H = I'y ,/A. In many instances Ty ,/A is
smooth, so that M, can be represented as the quotient of a smooth variety
by a finite group H. The main results in this circle of ideas are proved in the
first two sections of Chapter X VI. When trying to naively push the same
ideas to prove analogous results regarding M, ,, one encounters significant
difficulties. These difficulties are addressed in Section 4, and the way to an-
alyze them is to use the Picard-Lefschetz transformation. The problem of
expressing Mg,n as a quotient X/H where X is a smooth variety and H a
finite group was solved by Looijenga. In the remaining part of the chapter we
present a variation of Looijenga construction due to Abramovich, Corti, and
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Vistoli which exhibits X as a fine moduli space, in fact as a moduli space
for admissible G-covers, where G is an appropriate finite group, and H is a
quotient of the semidirect product G™ x Aut(G).

The fact that Hg," can be expressed as the quotient X/H, with X a
smooth variety and H a finite group, makes it relatively easy to talk about
its Chow rings. The theory of cycles in M, , is the central subject of Chap-
ter XVII. After presenting, in Section 2, the foundational material on the
intersection theory of stacks of the form [X/H] with X smooth and H a
finite group, in Section 3 we introduce the tautological classes. These are the
Mumford—Morita—Miller classes (i.e., the x-classes), the point-bundle classes
(i.e., the 1)-classes), the Hodge classes (i.e, the A-classes), and the bound-
ary classes (i.e., the d-classes). In Section 4 we describe the behavior of
these classes under push-forward and pullback via the projection morphism
v _I\Zg,n_,.l — Mg‘,, and the clutching morphisms & : My — Hgm from
the various boundary strata. In Section 5, following Mumford, we use, on
the one hand, Grothendieck’s Riemann—-Roch theorem to find relations be-
tween the Hodge classes and the & classes, and on the other hand, using
the flatness of the Gauss—Manin connection, we exhibit a set of generators
for the tautological ring R*(M,) (i.e., the ring generated by the tautological
classes). At the end of the section we discuss Deligne’s canonical extension of
the Gauss—Manin connection to the boundary of moduli. Section 6 offers a
brief and informal discussion of the tautological ring, presenting two results,
a nonvanishing theorem for the tautological class x,_2 due to Faber, and a
vanishing theorem for polynomials of degree greater than g — 2 in the tauto-
logical classes, due to Looijenga. Both results are proved in subsequent parts
of the book. In the last section we present Keel’s result on the Chow ring of
My ., and we give a direct computation of A'(Mg ).

The fact that M, ,, is a rational K(I'y ,, 1) for the mapping class group
I'y » hints to the possibility of studying My, from a combinatorial point of
view. This is done in Chapter X VIII, where we introduce a Iy ,-invariant
triangulation of the Teichmiiller space 7, ,. Loosely speaking, the complex
structure on a Riemann surface determines (and is determined by) a graph
embedded in the Riemann surface itself. This makes it possible to give a I'g .-
invariant cellular decomposition of 7, , where the cells are labelled by these
graphs. In the first two sections we introduce the arc system complex and,
by duality, the ribbon graphs, which are the basic tools for the combinatorial
description of 7, . To prove that (a subcomplex of) the arc system complex
gives a combinatorial model of 7, ,, one may choose either the theory of
Jenkins—Strebel differentials, or alternatively, via uniformization, the canoni-
cal hyperbolic metric on Riemann surfaces. We choose the latter since it more
easily enables one to extend the cellular decomposition to the bordification
of Ty ,. After explaining, in Section 4, how hyperbolic geometry is used to
obtain the cellular decomposition of 7, , and after recalling, in Sections 5
and 6, some basic facts about the uniformization theorem and the Poincaré
metric, in Sections 7 and 8 we give the construction of the cellular decom-
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position of 7 ,,. In this book the cellular decomposition of moduli spaces is
used in two ways. First of all to give a simple and direct proof of the vanish-
ing of the rational homology of M, , in high degree. These applications are
given in Chapter XIX. The second enters when computing the intersection
number of tautological classes in Kontsevich’s proof of Witten conjecture,
which is given in Chapter XX. In fact, this last application requires that the
cellular decomposition of M, , be extended to a suitable compactification of
moduli space. This task, which is technically more demanding, is carried out
in Sections 9-12.

Chapter XIX discusses the first consequences of the cellular decomposi-
tion constructed in Chapter XVIII. We begin by computing the rational coho-
mology of I/I—g,,, in degrees one and two. This computation can be performed
by elementary methods by virtue of the vanishing of the high homology of
Mg, which, in turn, is a direct consequence of the cellular decomposition.
This is carried out in Sections 2, 3, and 4. In Section 5, after a very brief
discussion of Harer’s stability theorem and of the Madsen—Weiss and Till-
mann theorems on the stable rational cohomology of M, ,,, we prove Harer’s
theorem on the second homology of M ,. This we do by using the knowledge
of H? (Hg,n; Q) and Deligne’s spectral sequence for the complement of a di-
visor with normal crossings. Further uses of the cellular decomposition are
presented in Section 7, where we give Kontsevich’s combinatorial expression
for the point-bundle classes 7, and in Section 8, where we give Kontsevich’s
combinatorial expression for an orientation form on My .

Chapter XX is almost entirely devoted to Kontsevich’s proof of Wit-
ten’s conjecture on the intersection numbers of the 1-classes. The proof is
self-contained, with the exception of an algebraic result by Itzykson for which
there is a very clear and well-written reference. In the first two sections we re-
view Witten’s generating series for the intersection numbers of the -classes,
introduce the Virasoro operators, and describe their link with the KdV hier-
archy. In Section 4 we prove Kontsevich’s combinatorial formula expressing
Witten’s generating series as a sum over ribbon graphs. We then give a self-
contained treatment of the Feynman diagram expansion of matrix integrals,
and finally, in Section 6, we express Kontsevich’s combinatorial sum as a
matrix integral and, using this, conclude the proof of Witten’s conjecture.
As we show in Section 7, the knowledge of the intersection numbers of the
1-classes can be used to prove the nonvanishing of the class «,_». This result
by Faber gives the threshold for the non-vanishing of the tautological ring of
M,. In fact, in Section 4 of Chapter XXI we prove a theorem by Looijenga
stating that the ring of tautological classes on M, vanishes in degree strictly
larger than g — 2. After recalling some basic facts about equivariant cohomol-
ogy, in the last two sections of Chapter XX we present Harer and Zagier’s
computation of the virtual Euler—Poincaré characteristic of Mg . '

The Brill-Noether theory is one the central themes of the first volume
of this book. There we study the static aspect of this theory, namely the
theory of special linear series on a fixed curve. In our final Chapter XXI we
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study the Brill-Noether theory for smooth curves moving with moduli. In the
first few sections, aside for an intermission in which we prove the vanishing
theorem of Looijenga we mentioned above, we construct the basic varieties
of the Brill-Noether theory for smooth moving curves, and we describe their
tangent spaces in terms of the fundamental homomorphisms po : H°(C; L) ®
HO(C;wecL™') — H%we) and p, : ker o — H®(w?), where C is a smooth
curve and L a line bundle on it. We also connect these maps to the normal
sheaf relative to the morphism ¢ : C — P", where r = h%(C,L) — 1. In
Section 7 we present Lazarsfeld’s elegant proof of Petri’s conjecture. In the
remaining part of the chapter we concentrate mostly on the study of g}’s and
g%’s on smooth curves. We revisit a number of classical results and present
some nonclassical ones, related to, among others, the Hurwitz scheme, the
Severi variety of plane curves of given degree and genus and the unirationality
of My for small values of g.

Notational conventions and blanket assumptions

- Unless otherwise stated, all schemes are implicitly assumed to be of finite
type over C.

- If V is a vector space or a vector bundle, PV is the projective space, or
projective bundle, of lines in V, or in the fibers of V.

- If¢: X — S is a morphism of schemes or of analytic spaces and T is
a locally closed subscheme or subspace of S, we write X1 to denote the
fiber product X xgT'. Likewise, if s is a point of S, we write X, to denote
the fiber p1(s).

- We usually write Sym? V' to indicate the g-th symmetric product of the
module or coherent sheaf V. Occasionally, we instead use the notation
SV, especially when V is a vector space.



