Abstract Domains in
Constraint Programming

Marie Pelleau

]

Series Editor
Narendra Jussien

Abstract Domains in
Constraint Programming

Marie Pelleau

A 3

e %
° 5
_ :ifn

e ELSEVIER

First published 2015 in Great Britain and the United States by ISTE Press Ltd and Elsevier Ltd

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Press Ltd Elsevier Ltd

27-37 St George's Road The Boulevard, Langford Lane
London SW19 4EU Kidlington, Oxford, OX5 1GB
UK UK

www.iste.co.uk www.elsevier.com

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment

may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information
or methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence
or otherwise, or from any use or operation of any methods, preducts, instructions, or ideas contained in
the material herein.

't

For information on all Elsevier publications visftsurwebsite at
http://store.elsevier.com/

© ISTE Press Ltd 2015
The rights of Marie Pelleau to be identified @as the author of this work have been asserted by her in
accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing in Publication Data

A CIP record for this book is available from the British Library
Library of Congress Cataloging in Publication Data

A catalog record for this book is available from the Library of Congress
ISBN 978-1-78548-010-2

Printed and bound in the UK and US

Abstract Domains in Constraint Programming

To Eliott, Joaquim and Ambrym

Preface

Constraint programming aims at solving hard combinatorial
problems, with a computation time increasing in practice
exponentially. Today, the methods are efficient enough to solve large
industrial problems in a generic framework. However, solvers are
dedicated to a single variable type: integer or real. Solving mixed
problems relies on ad hoc transformations. In another field, abstract
interpretation offers tools to prove program properties by studying an
abstraction of their concrete semantics, that is, the set of possible
values of the variables during an execution. Various representations for
these abstractions have been proposed. They are called abstract
domains. Abstract domains can mix any type of variables, and even
represent relationship between the variables. In this book, we define
abstract domains for constraint programming so as to build a generic
solving method, dealing with both integer and real variables. We will
also study the octagons abstract domain already defined in abstract
interpretation. Guiding the search by the octagonal relations, we obtain
good results on a continuous benchmark. Then, we define our solving
method using abstract interpretation techniques in order to include
existing abstract domains. Our solver, AbSolute, is able to solve mixed
problems and use relational domains.

Marie PELLEAU
February 2015

Introduction

Recent advances in computer science are undeniable. Some are
visible, and others are less known to the general public: today, we are
able to quickly solve many problems that are known to be difficult
(requiring a long computation time). For instance, it is possible to
automatically place thousands of objects of various shapes in a
minimum number of containers in tens of seconds, while respecting
specific constraints: accessibility of goods, non-crush, etc. [BEL 07].
Constraint programming (CP) formalizes such problems using
constraints that describe a result we want to achieve (accessibility of
certain objects, for example). These constraints come with efficient
algorithms to solve greatly combinatorial problems. In another
research area, semantics, abstract interpretation (AI) attacks an
insoluble problem in the general case: the correction of programs. With
strong theoretical tools developed from its creation (fixed-point
theorems), Al manages to prove the properties of programs. In this
area, the effectiveness of methods makes it possible for impressive
applications to be solved: tools in Al have, for instance, managed to
prove that there was no overflow error in the flight controls of the
Airbus A380 which contains almost 500,000 lines of code.

The work presented in this book is at the interface between CP and
Al two research areas in computer science with a priori quite different
problematics. In CP, the goal is usually to obtain a good computation
time for problems that are, in general, nondeterministic polynomial

Xii Abstract Domains in Constraint Programming

time (NP), or to extend existing tools to handle more problems. In Al,
the goal is to analyze very large programs by capturing a maximum of
properties. Despite their differences, there is a common concern in
these two disciplines: identifying an impossible or difficult
(computationally) space to compute precisely (the solutions set in CP
and the semantics of the program in AI). It concerns computing the
relevant overapproximations of this space. CP proposes methods to
carefully surround this space (consistency and propagation), always
with Cartesian overapproximations (boxes in R™ or Z"). Al uses often
less accurate overapproximations but not only Cartesian: they may
have various different shapes (not only boxes but also octagons,
ellipsoids, etc.). These non-Cartesian approximations facilitate more
properties to be captured.

In this book, we exploit the similarities of these overapproximation
methods to integrate Al tools in the methods of CP. We redefine tools
in CP from notions of Al (abstract domains). This is not only an
intellectual exercise. Indeed, by generalizing the description of
overapproximations, there is a significant gain in the expressiveness of
CP. In particular, the problems are treated uniformly for real and
integer variables, which is not currently the case. We also develop the
octagon abstract domain, showing that it is possible to exploit the
relationships captured by this particular domain to solve continuous
problems more effectively. Finally, we perform the opposite task: we
define CP as an abstract operation in Al, and develop a solver capable
of handling practically all abstract domains.

I.1. Context

As mentioned before, the CP and Al have a common concern:
computing efficiently and as accurately as possible an approximation
of a difficult or impossible space. However, the issues and problems of
these two areas are different, and hence so are their fields of
application.

Introduction xiii

I.1.1. Constraint programming

CP, whose origins date back to 1974 [MON 74], is based on the
formalization of problems such as a combination of first-order logic
formulas, i.e. the constraints. A constraint defines a relationship
between the variables of a problem: for example, two objects placed in
the same container have an empty geometric intersection, that is to say,
a heavy object should be placed under a fragile object. This is known
as declarative programming. CP provides efficient generic solution
methods for many combinatorial problems. Academic and industrial
applications are varied: job-shop scheduling problems
[GRI 11, HER 11a], design of substitution tables in cryptography
[RAM 11], scheduling problems [ST@ 11], prediction of the
ribonucleic acid (RNA) secondary structure in biology [PER 09],
optical network design [PEL 09] or automatic harmonization in music
[PAC 01].

One of the limitations of the expressiveness of CP methods is that
they are dedicated to the nature of the problem: solvers used for
discrete variable problems are fundamentally different from techniques
dedicated to continuous variable problems. In a way, the semantics of
the problem is different depending on whether one deals with discrete
or continuous problems.

However, many industrial problems are mixed: they contain both
integer and real variables. This is, for example, the case of the problem
of fast power grid repair after a natural disaster [SIM 12] to restore the
power as quickly as possible in the affected areas. In this problem, we
try to establish a plan of action and determine the routes that should be
used by repair crews. Some of the variables are discrete; for example,
each device (generator, line) is associated with a Boolean variable,
indicating whether it is operational or not. Others are real, as the
electrical power on a line. Another example of application is the design
of the topology of a multicast transmission network [CHI 08]: we want
to design a network that is reliable. A network is said to be reliable
when it is still effective even when one of its components is defective,
so that all user communications can pass into the network with the
least possible delay. Again, some of the variables are integers (the

xiv Abstract Domains in Constraint Programming

number of lines in the network) while others are continuous (the flow
of information passing over the network average).

The convergence of discrete and continuous constraints in CP is both
an industrial need and a scientific challenge.

1.1.2. Abstract interpretation

The basis of AI was established in 1976 by Cousot and Cousot
[COU 76]. Al is the theory of semantic approximation [COU 77b] in
which one of the applications is programs proof. The goal is to verify
and prove that a program does not contain a bug, that is to say, runtime
errors. Industrial stakes are high. Indeed, many bugs have made
history, such as the Year 2000 bug, or Y2K, due to system design error.
On January 1, 2000, some systems showed the date of January 1, 1900.
This bug may be repeated on January 19, 2038, on some UNIX
systems [ROB 99]. Another example of a bug is that of the infamous
inaugural flight of the Ariane 5 rocket, which, due to an error in the
navigation system, caused the destruction of the rocket only 40 s after
takeoff.

Every day, new softwares are being developed, corresponding to
thousands or millions of lines of code. To test or verify these programs
manually would require a considerable amount of time. The soundness
of programs cannot be proven in a generic way; thus, Al implements
methods to automatically analyze certain properties of a program. The
analyzers are based on operations on the semantics of programs, that
is, the set of values that can be taken by the variables of the program
during its execution. By computing an overapproximation of these
semantics, the analyzer can, for example, prove that the variables do
not take values beyond the permitted ranges (overflow).

Many analyzers are developed and used for various application
areas, such as aerospace [LAC 98, SOU 07], radiation [POL 06] and
particle physics [COV 11].

Introduction xv

1.2. Problematic

In this book, we focus on CP solving methods, known as complete,
that find the solution set or prove that it is empty, if necessary. These
methods are based on an exhaustive search of the space of all possible
values, also called search space. Using operations to restrict the space
to visit (consistency and propagation), these methods can be
accelerated. Existing methods are dedicated to a certain type of
variables, discrete or continuous. Facing a mixed problem, containing
both discrete and continuous variables, CP offers no real solution and
the techniques available are often limited. Typically, variables are
artificially transformed so that they are all discrete as in the solver
Choco [CHO 10], or all continuous as in the solver RealPaver
[GRA 06]. In AI, analyzed programs often, if not always, contain
different types of variables. Theories of Al integrate many types of
domains, and helped develop analyzers uniformly dealing with discrete
and continuous variables.

We propose to draw inspiration from the work of the AI community
on the different types of domains to provide new solving methods in CP.
These new methods should be able, in particular, to approximate with
various shapes and solve mixed problems.

I.3. Outline of the book

This book is organized as follows: Chapter 1 gives the mandatory
notions of Al and CP to understand our work and an analysis of the
similarities and differences between these two research areas. Based on
the similarities identified between CP and AI, we define abstract
domains for CP in Chapter 2, with a resolution based on these abstract
domains. The use of an example of abstract domain existing in Al in
CP, the octagons, is detailed in Chapter 3. Chapter 4 deals with the
solving method implementation details presented in Chapter 2 for
octagons. Finally, Chapter 5 redefines the concepts of CP using the
techniques and tools available in Al to define a method called abstract
resolution. A prototype implementation, as well as experimental
results, is finally presented.

xvi Abstract Domains in Constraint Programming

I.4. Contributions

The work of this book aims to design new solving techniques for
CP. There are two parts in this work. In the first part, the abstract
domains are defined for CP, so as mandatory operators for the solving
process. These new definitions allow us to define a uniform resolution
framework that no longer depends on the variables type or on the
representation of the variables values. An example of a solver using the
octagon abstract domain and respecting the framework is implemented
in a continuous solver Ibex [CHA 09a], and tested on examples of
continuous problems. In the second part, the different CP operators
needed to solve are defined in Al, allowing us to define a solving
method with the existing operators in Al This method was then
implemented over Apron [JEA 09], a library of abstract domains.

Most theoretical and practical results of Chapters 2—5 are the subject
of publications in conferences or journals [TRU 10, PEL 11, PEL 13,
PEL 14].

Contents

PREFACE e ix
INTRODUCTION X1
CHAPTER 1. STATEOF THEART 1
1.1. Abstract interpretation 1
1.1.1. Introduction to abstract interpretation 1
1.1.2. General presentation 4
113, Conclilion : » « s o wmamomassss 65586 us 24

1.2. Constraint programming 25
1.2.1.Principles 26
1.22. Propagation 32
1.2.3.Exploration 40
1.2.4. Resolutionscheme 41
1.2.5. Exploration strategies 43
1.2.6. Discrete/continuous comparison 46
1.27.Conclusion 47
1.3.Synthesis, 48
1.3.1. Links between AlandCP 48

1.3.2. Analysiso o e 50

vi

Abstract Domains in Constraint Programming

CHAPTER 2. ABSTRACT INTERPRETATION

FOR THE CONSTRAINTS 53
2L INroduCHON & « 5 0 5 0 5 s 65 s w8 5 8 8 85 5888 8w s 53
2.2, Unified components 54

2.2.1. Consistency and fixpoint 35
2.2.2. Splittingoperator 60
2.2.3. Abstractdomains 63
23.Unifiedsolving 64
24.Conclusion 68

CHAPTER 3. OCTAGONS 69
3.1.DefinitionS « : < < s v v v 555 008 855 555658 00 s 69
3.2.Representations 72

3.2.1. Matrix representation 73
3.2.2. Intersection of boxes representation 77
3.3. Abstract domain components 79
3.3.1. Octagonal splitting operator 80
3.3.2. Octagonal precision 80
3.4, Abstractdomains 82
S35 CONCINEION « v v s wmw v o mmwme s 28 5 3 08240 84

CHAPTER 4. OCTAGONAL SOLVING 85
4,1.0ctagonal CSP 85
4.2. Octagonal consistency and propagation 89

4.2.1. Octogonal consistency 89
4.2.2, Propagationscheme 90
4.3.Octagonalsolver 94
4.3.1. Variables heuristics 94
4.3.2. Octogonalization heuristic. 96
4.4.Experimentalresults 99
4.4.1. Implementation 100
4.4.2. Methodology 100
443.Results. 102
444 Analysis oo 102

4.5.ConCluSION . . v v v e e e e e e e e e e 108

Contents vii

CHAPTER 5. AN ABSTRACT SOLVER: ABSOLUTE 111
5.1. Abstract solving method 112
5.1.1. Concrete solving as concrete semantics 112
5.1.2. Abstract domains existinginCP 113
5.1.3. Abstract domains operators 114
5.1.4. Constraints and consistency 117
5.1.5. Disjunctive completion and split 118
5.1.6. Abstractsolving 123
5.2.The AbSolutesolver 125
5.2.1.Implementation 125
5.2.2. Experimental results 133
53.Conclusion 137
CONCLUSION AND PERSPECTIVES 139
BIBLIOGRAPHY ittt 143

oM EE, B B 5E #EPDFIE V7 0] ;. www. ertongbook. com

