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The visual local representation model based on local features and visual
vocabulary serves as a fundamental component in many existing computer
vision systems. It has widespread application in the fields of object recogni-
tion, scene matching, multimedia content search and analysis, and also is the
ad hoc focus of current computer vision and multimedia analysis research.
The pipeline of the visual local representation model is to first extract the
local interest points from images, then quantize such points into visual
vocabulary, which forms a quantization table to obtain the feature-space
division into visual words. Subsequently, each image is represented as a bag-
of-visual-words descriptor, and is inverted indexed into all its corresponding
visual words. Research on current computer vision systems have shown that
local visual representation models have sufficient robustness against scale
and affine transforms and are good at handling partial object occlusion and
matching.

However, recent research has also discovered that there are problems
in the state-of-the-art visual local representation models, i.e., insufficient
visual content discriminability, extreme dense representation, as well as an
inability to reveal higher-level semantics. This book focuses on the study of
local feature extraction, quantization errors and semantic discriminability
in visual vocabulary, as well as the visual quantization errors, semantic
discriminability during the visual vocabulary construction, and the visual
phrase based visual vocabulary representation problem.

In the local feature extraction, both spatial and category contexts are
exploited, which puts forward the interest-point detection from a local scope
toward a global scope. In the unsupervised learning of visual vocabulary
and its indexing, the quantization errors in the traditional visual vocabulary
are investigated, which further reveals the difference between visual words
and textual words, and the influence of narrowing this difference. In
the supervised learning of visual vocabulary and its indexing, the image
labels are introduced to supervise the visual vocabulary construction, which
achieves learning-based quantization in local feature space. Finally, based
on the optimized visual vocabulary model, the extension from visual words
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to visual phrases is investigated, together with its usage and combination
manners with the traditional bag-of-visual-words representation. The main
contents of this book are as follows.

In the stage of interest-point detection, a context-aware semi-local
interest-point detector is proposed. This detector integrates maximum out-
puts in image scale space with spatial correlations for interest-point de-
tection. First, the multiple-scale spatial correlations of local features are
integrated into a difference of contextual Gaussian (DoCQG) field. Experi-
ments have revealed that it can fit the global saliency analysis results to a
certain degree. Second, the mean shift algorithm is adopted to locate the
detection results within the difference of contextual Gaussian field, in which
the training labels are also integrated into the mean shift kernels to enable
the finding of “interest” points for subsequent classifier training.

In the stage of unsupervised learning for constructing visual vocabulary
and its indexing, a density-based metric learning is proposed for unsuper-
vised quantization optimization. First, using fine quantization in informative
feature space and coarse quantization in uninformative feature space, the
quantization errors in visual vocabulary construction are minimized, which
produces more similar distribution from visual words to textual words.
Second, a boosting chain-based hierarchical recognition and voting scheme
is proposed, which improves the online recognition efficiency while main-
taining its effectiveness and discriminability.

In the state of supervised visual vocabulary learning, a semantic
embedding-based supervised quantization approach is proposed. This
approach introduces the image labels from the web to build the semantic
sensitive visual vocabulary. First, a feature-space density-diversity
estimation algorithm is introduced to propagate the image labels from image
level into local feature level. Second, the supervised visual vocabulary
construction is modeled into a hidden Markov random field, in which
the observed field models the local feature set, while the hidden field
models the user label supervision. The supervision in the hidden field is
achieved via Gibbs distribution over the observed field, and the vocabulary
construction is treated as a supervised clustering procedure on the observed
field. Meanwhile, we adopt WordNet to model the semantic correlations
for user labels in the hidden field, which effectively eliminates the labels
synonym.



Preface ix

In the stage of visual vocabulary-based representation, a co-location
visual pattern mining algorithm is proposed. This algorithm encodes the
spatial co-occurrence and correlative positions of local feature descriptors
into co-location transactions and leverages Apriori algorithm to mine the
co-location visual patterns. Such a pattern is second order and is sensitive
to category information, which serves as more discriminative and lower
dimensional local visual descriptions. In addition, such sparse represen-
tation, together with the original bag-of-visual-words representation, can
further improve the visual search precision in visual search and recognition
experiments in benchmark databases, which has been proven in quantitative
experimental comparisons.
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