SO

Cross Platform

Web Service Development
Using XML

P Integrate your enterprise applications
across the Webl

» The platform-independent guide
to SOAP

» SOAP programming with C++, Perl,

C#, Visual Basic®, and Java™

» Build an industrial-strength SOAP

system from scratch

» CD-ROM: SOAP for Windows®,
Linux® and UNIX®, plus an extensive
source code library!

SCOTT SEELY

Technical Reviewers: Yves LaFon, Chair of the SOAP W3C Committee
Kent Sharkey, .NET Frameworks Technical Evangelist, Microsoft
Appendix on SOAP and Perl by Paul Kulchenko, author of SOAP Lite

SOAP:

Cross plahcov‘m
Web Service Developmen+

U\sing XML

r/

SCOTT SEELY

ISBN 0-13-090763-4

780130907639

90000

l

Prentice Hall PTR, Upper Saddle River, NJ 07458
http://www.prenhall.com

l

9

Editorial/Production Supervision: Kathleen M. Caren
Acquisitions Editor: Tim Moore

Editorial Assistant: Allyson Kloss

Marketing Manager: Debby Van Dijk

Buyer: Maura Zaldivar

Cover Design: Anthony Gemmellaro

Cover Design Director: Jerry Votta

Art Director: Gail Cocker-Bogusz

Interior Series Design and Page Makeup: Meg Van Arsdale

© 2002 Prentice Hall PTR
UNtl Prentice-Hall, Inc.
= Upper Saddle River, NJ 07458

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, contact

Corporate Sales Department,

Prentice Hall PTR

One Lake Street

Upper Saddle River, NJ 07458

Phone: 800-382-3419; FAX: 201-236-714

Email (Internet): corpsales@prenhall.com

All rights reserved. No part of this book may be
reproduced, in any form or by any means, without
permission in writing from the publisher.

Printed in the United States of America.
1098765432

ISBN 0-13-090763-4

Pearson Education LTD.

Pearson Education Australia PTY, Limited

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd.

Pearson Education Canada, Ltd.

Pearson Educacién de Mexico, S.A. de C.V.

Pearson Education—]Japan

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Upper Saddle River, New Jersey

Jean, Vince, and Angeline,
thanks for inspiring me to do great things.

s long as there have been two computers, there has been difficulty get-

ting them to communicate. Dozens, possibly hundreds, of strategies

have arisen, each with their own strong and weak points. However, the
end result is that still, it is difficult to get two computers to agree on a strate-
gy for communication. Everyone wants everyone else to change to meet their
strategy’s needs. Thus, we end up with the “Communication Wars,” CORBA
vs. DCOM, DCOM vs. RMI, messaging vs. RPC, and so on.

Into this tangled mass of communication comes SOAP (Simple Object
Access Protocol). SOAP does not try to solve all problems; it only defines a
simple, XML-based communication format. However, with this simple goal,
and a powerful extensibility mechanism, SOAP bears the promise of being a
true cross-everything communication protocol—cross—programming language,
cross-operating system, cross-platform. As long as a computer, operating
system, or programming language can generate and process XML (that is,
text), it can make use of SOAP. Since the initial release, almost every major
software vendor has either produced, or announced, an implementation of
SOAP. We've seen standalone SOAP, SOAP built into Web servers, applica-
tion servers, communication tools and even messaging middleware using
SOAP. In the future, SOAP will become even more prevalent, as companies
and organizations like Microsoft, IBM, Apache, and Sun add even more
SOAP support to their applications, operating systems and programming
languages.

xi

Foreword

As the SOAP specification winds its way through the W3 standardization
process, I'm certain that we will see changes. However, please don't let this
stop you from experimenting and using SOAP in your applications. Yes, there
will be changes, but these should be relatively minor, and each implementa-
tion should hide many of these details.

I first “met” Scott because of a mailing list—DevelopMentor’s excellent list
devoted to SOAP discussions (http://discuss.develop.com/soap.html if you're
interested in joining). There he tirelessly helped others understand what he
obviously thought as an important technology. Therefore, I was glad to hear
that he was also working on this book. He has packed a great deal of practi-
cal development advice into these pages. I also love the fact that he shows a
variety of the implementations available, and that they are all communicating
nicely.

I hope that as you read this book, you see why Scott and I think SOAP is
so important. So, whether you are a Java developer using the Apache imple-
mentation of SOAP, a VB developer using the Microsoft SOAP Toolkit, or a
C# developer using .NET Web Services, or one of the many other imple-
mentations available, I hope that you join us in using SOAP in your applica-
tions. Perhaps together we can all learn to communicate.

Kent Sharkey

.NET Frameworks Technical Evangelist
Microsoft Corporation

t is amazing what one little protocol can do for an individual’s life. In early

2000, Tim Moore at Prentice Hall wrote to a number of technical authors,

including me, and asked what we thought of the Simple Object Access
Protocol (SOAP). Never having heard of it, I went out and found the v0.9
specification and joined the SOAP mailing list hosted by DevelopMentor.!
After completing my initial survey, I could not shake the feeling that SOAP
was about to become something very big and important. By May 2000, I was
signed up to write the book you now hold.

Writing a book on a new technology helps you understand how experts are
created. You learn to understand the various nuances of what you can do with
the protocol. Other standards may emerge to handle things the early adopters
deem necessary (WSDL and UDDI emerged almost in response to SOAP’s
existence) and you learn those as well. If you participate in a discussion group
and give good answers, you get noticed. For the few of you who subscribe to
the DevelopMentor list, you know what happened to me. I gave a number of
good answers and I open-sourced a fairly small SOAP engine (presented in
Chapter 4). These actions resulted in Microsoft approaching me and eventu-
ally hiring me. Like I said, interesting things can happen to your life.

By coming over to Microsoft, I have been able to see how they do things
on the inside with respect to SOAP. Right now, they really are concerned

! You can login their various lists by browsing over to http://discuss.develop.com.

xiii

Xiv

Acknowledgments

about getting interoperability to work, both between their own products and
between their products and other ones. I believe that the company will do the
right thing and keep this attitude of making internal and external interoper-
ability a priority. Inside, a lot of employees care about doing the right thing
for everyone, not just for Microsoft.

I wrote this book during what seems to be the busiest year of my life (so
far). I finished writing Windows Shell Programming in May 2000. Once that
was done, I started in on this SOAP book. Besides that:

* I moved four times—twice in Wisconsin, twice in Washington.
e Iinterviewed and got a job writing for MSDN.

e My wife and I conceived and gave birth to Angeline (born
March 15, 2001).

I could not have done all this without the support and help of my family.
In between the sale of my house in Hartford, Wisconsin and my move to Oak
Creek, Wisconsin, my grandfather let us move in for a bit. We all enjoyed
spending that time together. I also have to thank my wife Jean and my two
children, Vince and Angeline. They give me the strength and support to do
amazing things. I have to thank my parents and my sister for believing in me.
Finally, I want to thank Tim Moore and his staff at Prentice Hall. Thanks for
cutting me some slack while writing this. My schedule slipped a number of
times and they just took it in stride.

FOREWORD. i i
ACKNOWLEDGMENTS. oo xiii

PART ONE:
SOAP—EVERYTHING YOU WANT TO KNOW .. .1

| HOWWE GOTTO SOAP . v s s vs s s sasasannnmsnnss 3
The Abacus 4
Early Calculatorss 6
Programmable Machines 7
Electronic Computers 9
Distributed Computing 10
Summary 20

Bibliography 21

vi Contents

2 XML OVERVIEW e 23
Uniform Resource Indentifiers 24
XML Basics 26
XML Schemas 28
XML Namespaces 34
XML Attributes 37

Summary 41

3 THE SOAP SPECIFICATION. 43
Things to Know 45
Rules for Encoding Types in XML 46
The SOAP Message Exchange Model 63
Structure of a SOAP Message 66
Using SOAP in HTTP 79
Using SOAP for RPC 83

Summary 85

4 BUILDING A BASIC SOAP CLIENT AND
SERVER. . . . e 87

SOAP Library Design 88

In Search of One Good Socket Library 90
SimpleSOAP Library 92

SOAPNetwork Library 139

A Simple SOAP Server 146

A Simple SOAP Client 156

Summary 160

Fun Things to Try 160

Contents

PART TWO:
RELATED TECHNOLOGIES 161
WEB SERVICES DESCRIPTION LANGUAGE 163

WSDL Overview 165

Defining a Web Service 167

SOAP Binding 182

HTTP GET and POST Binding 187
MIME Binding 191

Summary 196

UNIVERSAL DESCRIPTION, DISCOVERY, AND
INTEGRATION 197

UDDI Basics 198

Where Does UDDI Fit In? 200
UDDI Information Types 201
The Programmer’s API 204

Summary 207

AVAILABLE SOAP IMPLEMENTATIONS 209
Apache 210

" ldooXoap 211

lona 212

Microsoft 213

pocketSOAP 215

RogueVVave 215

SOAP::Lite 217

vii

viii

Contents

White Mesa 217
Zope 218

Summary 218

PART THREE:

CASE STUDY:

A WEB-BASED ACUTION SYSTEM 219
AUCTION SYSTEM AND REQUIREMENTS 221
Background 221

Executive Summary 222

Bidder Enrollment and Management 223

Item Enrollment and Management 224

The Bidding System 225
Reporting 226

Summary 228

AUCTION SYSTEM DESIGN 229
Bidder Enrollment and Management 231
Item Enrollment and Management 234

The Bidding System 238

Summary 242

BIDDER ENROLLMENT 243
The Java Environment 244

Setting Up the Java Enviroment 244

Securing Access to the Web Service 256

The VB Environment 259

Summary 280

CATEGORY AND ITEM
General Implementation Rules
Category Management 285
Item Management 308

Summary 317

THE BIDDING SYSTEM
Bidding Pages 320
Bidding Web Service 331

Summary 336

Contents

MANAGEMENT 283
284

CASE STUDY SUMMARY . c s svsasoisinsmanomas 337

Client Management 338
Category Management 339
Item Management 34|
Auction 342

Summary 343

APPENDIX . . v 5505

Chapter

HOW WE
GOT TO SOAP

o understand why we need a technology such as the Simple Object

Access Protocol (SOAP) we need to spend a bit of time looking at how

computing technology has evolved. SOAP itself started out as a way to
make distributed computing platform agnostic. We have always had the con-
cept of distributed computing. The idea of having people perform calcula-
tions that they are good at and then handing the work off to other mathe-
maticians is nothing new. For example, logarithms take a long time to com-
pute. Because of this, people wrote out and reproduced logarithmic tables for
other mathematicians to use.

To review the history, I would like to take a look at the things we have done
in moving from the abacus to mechanical calculators and then to distributed
computing. Understanding (or simply reviewing) this history gives some per-
spective of where we have come from and highlights why so many people are
excited about SOAP. The idea of ubiquitous computing is moving from being
just a neat idea to a reality. SOAP provides a way for all those computers to

talk to each other and request services of each other. Indulge me as I present
a little history lesson showing where our pursuit of automated number
crunching has taken us.

Chapter | How We Got to SOAP

The Abacus

The abacus has been used as a calculator for thousands of years, and you can
still find it in use in China, Japan, and the Middle East. The most common
form of the abacus can register numbers from 1 to 9,999,999,999,999.! The
abacus does this using 13 rows of beads as shown in Figure 1-1. The user of
an abacus reads the numbers from the beads touching the center bar. Each
bead touching the center bar on the bottom half of the abacus equals one
times the units column. Each bead touching the center bar from the top half
of the abacus equals five times the units column. Figure 1-2 shows how you
would represent the number 23.

The abacus shines when adding and subtracting numbers. Practiced users
can usually outpace a person using a modern adding machine. As users add
the second number in, they slide the beads up and down. Every time all five
bottom beads touch the center bar, one bead from the same column on the
top bar must come down. Then, all five beads must be returned to the bottom

Figure 1-1 Thirteen—column abacus.

I This particular form of abacus has 13 rows. As a rule, an abacus can handle smaller or larger num-
bers depending on its construction. Smaller numbers need fewer rows—you could handle numbers
through 9,999 with a four-row abacus. For each power of 10 that you want to handle, just add another row.

The Abacus

5 (top)
+ 2(bottom)
=7

‘9,0 ¢ %) %0 ¢ ‘g, %0 ¢

1. Move S ones
column lower
beads down.

2. Add onc oncs
column bead
from top.

3. Move two
top oncs column
beads up.

4. Add one
bead to lower
half of tens
column.

‘@0 7 Step 1. Input 23 Step 2. Add 7 Step 3. Reconcile

Figure 1-2 Figure 1-3 Adding 23 and 7 using abacus.
Representing 23 on the
abacus (white beads).

again. Likewise, if both top beads touch the center bar these beads must
moved away from the center bar and one bottom bead from the next highest
rank gets moved up. Figure 1-3 shows how one would execute 7 + 23 and
reconcile that to 30. To subtract 7 from 30 and get 23 you would reverse the
process.

Does that all make sense to you? Here is another way to look at the aba-
cus. For this example, we use people and their ﬁngers instead of beads to
build a human abacus. After all, the abacus is based on this same idea. The
bottom five beads represent the five fingers on a hand. The top two beads
represent two hands. Each “hand” equals five “fingers.” We use our human
abacus like this: When all the fingers on one hand fill up, we start counting
on the other hand. When the person in the ones column gets to 10, that per-
son sets their fingers to zero and the person in the tens column remembers
one on their hands (by raising one finger). This counting continues through
the ranks until the capabilities of the fingers in the abacus are used up.

Because of the abacus’s ability to aid in addition and subtraction, the tool
has endured for a long time. Due to its construction it does not handle mul-
tiplication and division very well. Multiplicati(m essentially involves adding
the numbers over and over again (25 ® 4 = 25 + 25 + 25 + 25). Division is also
possible but time consuming. Not suqnlsmgly, the abacus does not help us do
any serious number crunching. It does allow for distribution of computing
tasks. You may ask two or more people to manipulate the same series of num-
bers just to verify that the results are correct. Alternatively, you can also split

