. James Cohoon

a \/ a ,. Jack Davidson

Program
Design

e JEAEN
e R
.ti;!v;‘%"~ iy ot L

v

&
s
ol

o

W) :-// \

Ay P

S

W
('ll:\\

x&:o City** h
Toronto "

&

The McGraw-Hill Companies

% Higher Education

JAVA 1.5 PROGRAM DESIGN

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc.. 1221 Avenue of the
Americas. New York, NY 10020. Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights
reserved. No part of this publication may be reproduced or distributed in any form or by any means,

or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill
Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission,
or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside

the United States.
This book is printed on acid-free paper.
1234567890 VNH/VNHO0987654

ISBN 0-07-304096-7

Publisher: Elizabeth A. Jones

Sponsoring editor: Kelly H. Lowery
Developmental editor: Melinda D. Bilecki
Marketing manager: Dawn R. Bercier

Senior project manager: Kay J. Brimeyer
Senior production supervisor: Laura Fuller
Lead media project manager: Audrey A. Reiter
Media technology producer: Eric A. Weber
Senior designer: David W. Hash
Cover/interior designer: Rokusek Design
Supplement producer: Brenda A. Ernzen
Compositor: Interactive Composition Corporation
Typeface: 10/13 Times Roman

Printer: Von Hoffimann Corporation

Library of Congress Control Number: 2004105423

To Joanne McGrath Cohoon and Audrey Irvine

Java 1.5 edition foreword

ERENT AND W
It is a great time to learn to design and develop programs in Java! The release of Java
1.5 introduced a number of components for easing development efforts. These addi-
tions are important for beginning programmers because they help make program
design and development a clearer and more straightforward process.
The following list highlights some of the more important changes in Java and how
our textbook makes use of them. Other changes are noted throughout the text.

m Formatted input: Class Scanner is now available. This straightforward class
operates on a variety of input text and stream sources. The class automatically
parses an input source into individual elements. The class also offers intuitively
named methods for extracting the next input as a primitive type value and for

reporting whether any more values are in the input source. No longer do
beginning programmers have to go through the mystifying procedure of A
turning System.in into a BufferedReader and then manually extracting
strings and parsing them into primitive type values. We are happy to report this
version of our text is BufferedReader free. By using class Scanner for
extracting input, our code is both more concise and simpler to understand. These

are important properties for the beginning programming student.

m Formatted output: System.out and other print streams now have access to a
method printf() that provides straightforward output formatting functionality.
Although Java already provides a rich collection of formatting classes (e.g.,

NumberFormat and DateFormat), the relative ease of printf()
T formatting makes it possible for even beginning programmers '
to produce nicely formatted output. In addition, a new
appendix provides a detailed description of format
specifiers.

m Automatic boxing and unboxing: Java now provides automatic boxing and unboxing
conversions between the primitive types and the corresponding class representations
(e.g., int and Integer). Because these automatic conversions make code easier to
follow, our examples make full use of them. The accompanying discussions describe
the conversion process so that the reader can develop an accurate model of the

translation and execution process.

m [terator for loop: Java now provides an enhanced for loop for arrays and
collections. The iterator for loop offers a simple syntax for the sequential access of
the elements in a list. Because the iterator for loop ensures only valid elements are
considered, experts believe it will become the preferred looping construct for list
manipulation. However, programmers will also deal with existing code bases using
the traditional for loop for list processing. Therefore, while including several
demonstrations of the new loop form, our array discussion makes primary use of the
traditional for loop. The subsequent discussion of collections uses the for loop

form appropriate for the task at hand.

m Generic types: We introduce the new available generic types and their role in
developing common functionality for different types of data. More importantly, the
textbook introduces the Java Collection Framework with particular emphasis on the
list data structure ArrayList<T> and the generic algorithms of class Collections.
Our demonstration programs succinctly show their value to the beginning

programmer.

m Variable arity and varargs: Print stream formatting method printf() makes use of
the new Java capability of a method taking a variable number of parameters. Our
array discussion has been updated with the development of a print method for
displaying a variable number of values.

m User interface composition: Graphical user interface-based programming is now the
dominant program form. This textbook includes two interludes—optional chapter-
length sections—that introduce the swing library and event-based programming.
With this new version of Java, the complexity of dealing with a graphical user
interface becomes simpler. For example, the explicit acquisition of the content pane
for a window is no longer necessary. The removal of such hurdles makes it easier for

beginning programmers to develop their own graphical user interfaces.

Besides introducing Java 1.5, the text has undergone many other changes. Many explana-
tions and figures have been improved and additional ones included. The appendices and
index have been reorganized to make them more comprehensive and easier to use.

Ji B C
J.W.D

Preface

no ng courses. The rea-
sons are many. The use of the Imemet continues its explosive growth. Web-ready
application programs are becoming the dominant software model, and Java is the pro-
gramming language for the Internet. Java also offers maturing software development

tools, numerous packages for application programming of all types including multi-
threaded, advanced graphical user interfaces, and portability with its architecture-neu
tral design. The importance of security and robustness has taken on new meaning in
recent years, and Java's support of these concerns is integral throughout its design.
Being object-oriented, Java is a good pedagogical vehicle for modern software engi-
neering and programming concepts.

Most of the important concepts and problems in computer science cannot be
appreciated unless one has a good understanding of what a program is and how
to write one. Unfortunately, learning to program is difficult. Like writing well,
programming well takes years of practice. Teaching programming is very
similar in many respects to teaching writing.

Students are taught writing by reading examples of good prose and by repeated writ-
ing exercises where they learn how to organize their ideas so they can be presented
most effectively. As students develop their skills, they progress from writing and edit- '
ing a paragraph or two, to creating larger pieces of prose, such as essays, short stories,
and reports.

Our approach to teaching program design is similar to teaching writing.
Throughout the text, we present and discuss many examples of both good and
bad programming. Self-check and programming exercises give students the
opportunity to practice designing, organizing, and writing code.
In addition, we offer examples that facilitate learning the
practical skill of modifying existing code. This intro-
duction is done through the use of code that is specifi

vii

We have found this approach to be effective because it compels students to be active
participants—they must read and understand the provided code. To support this effort, the
code used in this text is available electronically at our website.

GOALS OF THE TEXT

This book is targeted for a first programming course, and it has been designed to be
appropriate for people from all disciplines. We assume no prior programming skills and
use mathematics and science at a level appropriate to first-year college students.

The primary goals of the text are to
s Introduce students to the Java programming language:
m Present and encourage the use of the object-oriented paradigm:
s Demonstrate effective problem-solving techniques;
m Engage the student with real-world examples;
m Teach students software-engineering design concepts;
m Introduce students to Java's core and graphical libraries;

s Give students practice organizing and writing code;

Teach students the practical skill of modifying existing code;
m Offer instructive examples of good and bad programming;

m Provide effective coverage of testing and debugging.

WHAT IS DIFFERENT AND WHY

The text provides in-depth coverage of all materials that an introductory course would
need, introduces much of the remaining material generally covered in follow-on courses,
and gives pointers to the rest. The breadth and the arrangement of chapters provides flex-
ibility for the instructor in what and when topics are introduced. The chapter coverage
and extensive appendices enable advanced learners to go further, and makes the book
valuable as a reference source.

Some of the things that distinguish our book include the following:

m Gentle introduction to objects: The book implements what we call the "objects right"
approach. Teaching the object-oriented paradigm in introductory courses for the last
ten-plus years has shown us that Java can be successfully introduced to beginning
programmers. We know that delaying user-defined classes to the end of a course
inhibits the ability of students to integrate the central pillar of the object-oriented pro-
gramming paradigm and forces superficial coverage of other important object-ori-
ented programming principles. Therefore, our presentation introduces objects early—
or as we prefer, right. Students begin using objects from standard packages right from
the beginning. They quickly develop meaningful programs for interesting problems.
Using this solid introduction, we then present the basics of class and object-oriented

design. After exploring control structures, we present a deeper look at methods,
classes, and object-oriented design.

Focus on problem solving: One of the biggest obstacles faced by many beginning stu-
dents is not knowing basic problem-solving techniques. The text addresses this issue
by introducing basic problem-solving skills in Chapter 1 and then applying the new
concepts in each chapter to problems selected for their appeal to a variety of audi-
ences. Students are first walked through examples that illustrate effective problem
solving, and then they are given a chance to tackle similar problems on their own.
Introduction to software-engineering design concepts: Software-engineering design
concepts are introduced via problem studies and software projects. Besides numerous
small examples, each chapter considers one or more problems in detail. As appropri-
ate, there are object-oriented analysis and design, and algorithm development to real-
ize the design.

Coverage of testing and debugging: An important skill for programmers is how to
test and debug the programs they design and implement. Chapter 13 introduces
important software engineering concepts and practices with regard to testing and
debugging. The chapter discusses testing techniques such as unit testing, integration
testing, and code inspections. The sections on debugging focus on teaching students
how to use the scientific method to find errors. The chapter also discusses common
errors of beginning programmers and how to recognize them. After control structures
have been introduced, this chapter material can be taught whenever an instructor
deems it appropriate.

Engaging and inclusive examples: Students learn from interesting situations they
might encounter in real life. Diverse case studies and programming projects are
drawn from topics as varied as physical fitness, spam, medical diagnosis, statistical
analysis, psychological typing, data visualization, graphs, entertainment, and anima-
tion. By offering this variety of examples, the text demonstrates how programmers
can participate and contribute to our daily lives.

Exclusive use of standard Java classes: The text uses only standard Java classes in
introducing Java programming concepts. In particular, there are no author-written
classes for acquiring input. Instead standard classes and techniques are presented in a
way that makes sense to beginning programmers.

Lab manual: A printed lab manual accompanies the text for schools that use laborato-
ries in their introductory courses. The lab material offers a hands-on experience that
reinforces Java programming concepts and skills.

Programming and style tips: Besides explaining Java and object-oriented program-
ming, the text also provides advice on how to be a better and more knowledgeable
programmer and designer. There are important tips on such topics as avoiding com-
mon programming errors, writing readable code, and following software engineering
practices.

Self-test, exercises, and software projects: Every chapter provides a self-test exercise
section with answers to enable students to evaluate their skills on important concepts.
The text also provide several hundred exercises whose solutions are available to

instructors through the publisher. Once the basics of Java are introduced in Chapter 2,
that chapter and all successive chapters supply a programming project that exercises
chapter concepts.

m Reference appendices: Appendices D and E provide nearly two hundred pages of
description of the standard Java APIs. The coverage makes the text a handy reference
manual well after the course completes.

CHAPTER OVERVIEW AND FEATURES

Introduction

Each chapter begins with a brief introduction designed to focus the student's attention and
prepare them for the material to be covered. We emphasize both the immediate signifi-
cance of the topic as well as its place in the broader programming context.

Objectives

A list of chapter objectives follows the introduction and provides a set of specific learning
goals for the student. This list enables students to measure their progress as they move
through chapter material and lets them evaluate their level of comprehension at the end. It
also serves as a guide for instructors to use when preparing tests and quizzes.

Icons and aside boxes

Icons and shaded boxes indicate warnings, style tips, advanced material, and information
pertaining to the Java language itself.
7 Indicates a warning about programming. Often these are tips on how
\f to avoid common programming errors.

Indicates that the associated material is related to programming style.

2? Indicates that the associated material is concerned with the Java pro-
gramming language itself.

Indicates programming tips or material that presents a more detailed
discussion or a sidebar to the current topic.

Full-color design

An inviting, full-color design highlights related material, indicates section breaks, calls
out special features, and makes key information easy to reference.

(a) Chapter text

(c) End of chapter material (d) Reference appendix

Code formatting

Specially formatted code listings make sections of code easy to find and reference. Each
complete listing is numbered according to its place in the chapter, separated from related
material by coloring and line numbering. Partial sections of code are clearly set off from
surrounding text and are generously annotated with easy-to-spot author comments.

UML diagrams

The use of UML diagrams helps clarify relationships between classes while at the same
time familiarizing students with this widely used system of notation.

Case studies

The chapters provide multiple case studies that are designed to teach effective problem-
solving skills and to reinforce object-oriented programming and software engineering
design concepts. The specific learning objective is highlighted at the beginning of each
case study, and problem-solving steps are highlighted with special icons. The case studies

Xi

are colored to distinguish them from other chapter material. Coverage of the case studies
is optional; they apply chapter concepts rather than introducing new concepts.

End-of-chapter reviews
Each chapter ends with a thorough, point-by-point summary of the chapter's major ideas.
The end of chapter materials are color highlighted for easy access.

Self-tests

Each chapter includes a self-test with answers supplied at the end of the chapter. These
self-check sections are designed to help students evaluate whether they have mastered the
chapter objectives and to reinforce the key ideas of the chapter.

Programming projects

Except for Chapter 1, which provides background material, each chapter has at least one
interesting programming case study presented in a manner that makes it suitable for use
as a class assignment. Programming case studies include determining your exercise train-
ing zone; harvesting e-mail addresses; medical diagnosis; automobile loan calculator; and
an aquarium simulation.

Exercises
An exercise section at the end of each chapter offers a variety of problems requiring a

range of efforts levels.

CHAPTER SUMMARIES

w Chapter 1: Background—computer organization; software; software engineering
principles; object-oriented software development; problem solving.

m Chapter 2: Java basics—program organization; method main(): commenting and
whitespace; classes, keywords, identifiers, and naming conventions; methods: pro-
gram execution; SDK; constants; variables; operations; primitive types: operators;
precedence: interactive programs; Scanner: primitive variable assignment.

s Chapter 3: Using objects—String; reference variables; nul1; inserting, extracting,
and concatenating strings; reference assignment; String methods.

s Chapter 4: Being classy—introduces user-defined classes; instance variables; con-
structors; instance methods; inspectors; mutators; facilitators; simple graphics.

m Chapter 5: Decisions—boolean algebra and truth tables: logical expressions; bool -
ean type: Boolean equality and ordering operators; testing floating-point values for
equality: operator precedence; short-circuit evaluation; if statement; if-else state-
ment: string and character testing; sorting; switch statement.

w Chapter 6: Iteration—while statement; simple string and character processing; file
processing; for statement; index variable scope; do-while statement.

w Graphics Interlude: GUI-based programming—graphical user interfaces; swing;
awt; and event-based programming

xii

w Chapter 7: Programming with methods and classes—parameter passing; invocation
and flow of control; class variables; scope; local scope; name reuse; overloading:
overriding; equals (): toString(); clone(); generics.

m Chapter 8: Arrays and collections—one-dimensional arrays; definitions; element
access and manipulation; explicit initialization; constant arrays; members; array pro-
cessing: methods; program parameters; vararg; sorting; searching; multidimensional
arrays; matrices; generics; collections framework; ArrayList<T>: collections algo-
rithms.

wm Chapter 9: Inheritance and polymorphism—object-oriented design; reuse; base
class; derived class; single inheritance; super; is-a, has-a, and uses-a relationships;
controlling inheritance; default, protected, and private members; polymor-
phism; abstract base class; interface hierarchies.

m Graphics Interlude: GUI-based programming—case studies in the design and imple-
mentation of graphical user interfaces for personality typing and the smiley guessing
game.

m Chapter 10: Exceptions—abnormal event; exceptions; throwing; trying; catching;
exception handlers; finally: stream specialization.

m Chapter 11: Recursive problem solving—recursive functions, sorting, searching,
visualization.

m Chapter 12: Threads—multiple independent flows of control; processes; threads;
scheduling and repeating threads; Timer: TimerTask; Thread:; Date; Calendar;
JOptionPane; sleeping; animation; systems software.

m Chapter 13: Testing and debugging—software development; code reviews; black-
box and white-box testing; inspections; test harness; statement coverage; unit, inte-
gration testing, and system testing; regression testing: boundary conditions; path cov-
erage; debugging.

m Appendix A: Tables and operators—Unicode character set; reserved words; opera-
tors and precedence.

m Appendix B: Number representation—binary numbers; decimal numbers; two’s com-
pliment; conversions.

m Appendix C: Formatted I/O—Scanner; printf().
m Appendix D: Applets—applet programming.
m Appendix E: Standard Java packages—java.applet; java.awt; java.io;

java.lang; java.math; java.net; javax.swing; java. text: and
java.util.

GRAPHICS INTERLUDES

From personal observations and from conversations and communications with col-
leagues, we recognize that not all introductory programming courses are able to introduce
graphical user interfaces (GUIs). The time may not be available to introduce the swing

xiii

API and event-driven programming. Therefore, we have coalesced this material into two
Graphical Interludes, and their coverage is optional. However, for instructors who want
to stress this material, the GUI coverage can be introduced after the class concepts of
Chapter 4 are presented.

We do distinguish between graphical user interfaces and creating graphical images.
The Java standard APIs make it quite simple to display rectangles, lines, circles, ovals,
triangles, and polygons. Their display is almost as easy as displaying text to a console
window. Examples in other chapters make independent use of these Java features. These
examples are also for the most part optional. However, it is our experience that students
enjoy creating graphical imagery and that the concepts of object-oriented programming
are easier to understand when examples have a visual nature.

USING THIS BOOK

The text continues to have more material than can be covered in a single course. The extra
coverage was deliberate—it enables instructors to select their topics on programming and
software development. The book has been designed for teaching flexibility. For example,
if instructors desire to delay the introduction of classes, they first can cover most of the
control structure materials (Sections 5.1-5.9 and Sections 6.1-6.5). Similarly, if an
instructor desires to introduce arrays before classes, the fundamental array material (Sec-
tions 8.1-8.4 and Section 8.8) can proceed the discussion of classes. Also except for the
example in Section 9.2, the discussion of inheritance can precede the coverage of arrays.

The testing and debugging material of Chapter 13 can be covered anytime after
classes and arrays have been introduced.

We use the following layout for our introductory course.

Week Topic Readings
I Computing and object-oriented design Chapter |
2 Programming fundamentals Chapter 2

3 Object manipulation Chapter 3 (Sections 3.1-3.5)
4-5 (lass basics Chapter 4

5 Conditional statements Chapter 5 (Sections 5.1-5.7, 5.10)

67 Tteration statements Chapter 6 (Sections 6.1-6.5)

8 Graphical user interfaces Graphics Interludes: | and 2
9-10" Classes Chapter 7
H-12° Arrays and lists Chapter 8
I3-14 " Inheritance and polymorphism Chapter 9

SUPPLEMENTARY MATERIALS

The publisher website at www. javaprogramprogramdesign.com offers the source
code and data files for all listings in the text. Other materials include a complete set of
slides, which are available in PowerPoint and PDF formats, and introductions to the vari-

Xiv

ous Java programming IDEs. Other educational supplements are available at our class
web site http://www.cs.virginia.edu/javaprogramdesign.

THE AUTHORS

Jim Cohoon is a professor in the computer science department at the University of Vir-
ginia and is a former member of the technical staff at AT&T Bell Laboratories. He joined
the faculty after receiving his Ph.D. from the University of Minnesota. He has been nom-
inated twice by his department for the university’s best-teaching award. In 1994, Profes-
sor Cohoon was awarded a Fulbright Fellowship to Germany, where he lectured on
object-oriented programming and software engineering. Professor Cohoon’s research
interests include algorithms, computer-aided design of electronic systems, optimization
strategies, and computer science education. He is the author of more than 70 papers in
these fields. He is a member of the Association of Computing Machinery (ACM), the
ACM Special Interest Group on Design Automation (SIGDA). the ACM Special Interest
Group on Computer Science Education (SIGCSE), the Institute of Electrical and Elec-
tronics Engineers (IEEE), and the IEEE Circuits and Systems Society. He is a member of
ACM Council, SIG Governing Board Executive Committee, former member of ACM
Publications Board, and is past chair of SIGDA. He can be reached at
cohoon@virginia.edu. His Web home page is http://www.cs.virginia.edu/
cohoon.

Jack Davidson is also a professor in the computer science department at the Univer-
sity of Virginia. He joined the faculty after receiving his Ph.D. from the University of Ari-
zona. Professor Davidson has received NCR’s Faculty Innovation Award for innovation in
teaching. Professor Davidson’s research interests include compilers, computer architec-
ture, systems software, and computer science education. He is the author of more than
100 papers in these fields. He is a member of the ACM, the ACM Special Interest Group
on Programming Languages (SIGPLAN), the ACM Special Interest Group on Computer
Architecture (SIGARCH), SIGCSE, the IEEE, and the IEEE Computer Society. He
served as an associate editor of Transactions on Programming Languages and Systems,
ACM’s flagship journal on programming languages and systems, from 1994 to 2000. He
was chair of the 1998 Programming Language Design and Implementation Conference
(PLDI "98) and program co-chair of the 2000 SIGPLAN Workshop on Languages. Com-
pilers, and Tools for Embedded Systems (LCTES 2000). He can be reached at
jwd@virginia.edu. His Web home page is http://www.cs.virginia.edu/~jwd.

DELVING FURTHER
The following texts are primary references on the Java language.
u Ken Arnold, James Gosling, and David Holmes, The Java Programming Language.
Third Edition, Addison-Wesley: June 2000.

m Bill Joy (Editor), Guy Steele. James Gosling, and Gilad Bracha, The Java Language
Specification, Second Edition, Addison-Wesley, June 2000.

XV

The following texts are good sources on the standard libraries and more-advanced
object-oriented design, and program development.

s David M. Geary, Graphic Java 1.2, Mastering the JFC: AWT, Volume |, Prentice
Hall, September 1998.

m David M. Geary, Graphic Java 2, Volume 2, Swing, Prentice Hall, March 1999.

w Joshua Engel, Programming for the Java Virtual Machine, Addison-Wesley. June
1999.

m Cay S. Horstmann and Gary Cornell, Core Java 2, Volume 1, Fundamentals, Prentice
Hall, August 2002.

s Cay S. Horstmann and Gary Cornell, Core Java 2: Volume 11, Advanced Features.
Prentice Hall, December 2001.

m Matthew Robinson and Pavel A. Vorobiev, Swing, Manning Publications Company;
February 2003.

m Stephen A. Stelting and Olav Maassen, Applied Java Patterns, Prentice Hall; Decem-
ber 2001.

m Sun Microsystems, Java Look and Feel Design Guidelines: Advanced Topics, Addi-
son Wesley Professional; March 2001

m Al Vermeulen (Editor), Scott W. Ambler, Greg Bumgardner, Eldon Metz, Alan Ver-
meulen, Trevor Misfeldt, Jim Shur, and Patrick Thompson, The Elements of Java
Style. Cambridge University Press; January 2000.

m John Zukowski, Java Collections, APress; April 2001.

ACKNOWLEDGMENTS

We thank the University of Virginia for providing an environment that made this book
possible. In particular, we thank Jack Stankovic for his tireless efforts in leading the com-
puter science department to national prominence. We also thank Jenna Cohoon, Joanne
Cohoon, John Knight, and Tom Horton for their comments. We thank Hannah Cohoon
for her fish artwork and JJ Cohoon for his icon artwork.

We thank all of the people at McGraw-Hill for their efforts in making this edition a
reality. In particular, we thank Betsy Jones, for her support and encouragement: Kay
Brimeyer, for her behind-the-scenes product-management skills; David Hash, for leading
the art and cover-design team; and Pat Steele, for copyediting. Special thanks go to Kelly
Lowery. our editor, for support. direction, and focus throughout this project; Melinda
Bilecki. our developmental editor, for managing and synthesizing the reviewing process:
Mary Cahall for her organizational ability; and Dawn Bercier for her creative marketing
ideas.

We thank the following testers, readers, and reviewers for their valuable comments
and suggestions on the text and associated materials:

A. Arokiasamy, Multimedia University of Malaysia
David Aspinall, University of Edinburgh
Ivan Bajic, San Diego State University

Xvi

Dwight Barnett, Virginia Tech

Vivekram Bellur, University of Virginia

David Bethelmy, Embry-Riddle Aeronautical University
Robert Biddle, Victoria University of Wellington
Elizabeth Boese, Colorado State University

Gene Boggess, Mississippi State University

Mike Buckley, University at Buffalo

Robert Burton, Brigham Young University

Judith Challinger, California State University, Chico
Errol Chopping, Charles Sturt University

Ilyas Cicekli, University of Central Florida
Charles Daly, Dublin City University

J. Greggory Dobbins, University of South Carolina
Neveen Elnahal, University of Virginia

Stephen Fickas, University of Oregon

Jeffrey Forbes, Duke University

Gerald Gordon, DePaul University

Heng Aik Koan, National University of Singapore
Michael Huhns, University of South Carolina
Norm Jacobson, University of California, Irvine
Cerian Jones, Montana Tech

Katherine Kane, University of Virginia

Cathy Key. University of Texas, San Antonio
Abigail Knight, Tandem School

Barry Lawson, University of Richmond

Susan Lindsay, University of Virginia

Evelyn Lulis, DePaul University

Lauren Malone, University of Virginia

Stephanie Kim Marvin, University of Virginia
Blayne Mayfield, Oklahoma State University

Jim McElroy, California State University, Chico
Daniel McCracken, City College of New York
Hugh McGuire, University of California, Santa Barbara
Christoph Mlinarchik, University of Virginia
Keitha Murray, Tona College

Faye Navabi, Arizona State University

Richard Pattis, Carnegie Mellon

Hal Perkins. University of Washington

Pete Petersen, Texas A&M University

Roger Priebe, University of Texas

Vera Proulx, Northeastern University

Graham Roberts, Flinders University

Roy Ruhling, University of Virginia

Xvii

Celia Schahczenski, Montana Tech

Carolyn Schauble. Colorado State University

Carol Scheftic, California Polytechnic State University, San Luis Obispo
Jesse Barrack Schofield, University of Virginia

John Scott, Massachusetts Bay Community College

Eric Schwabe. DePaul University

Mike Scott, University of Texas

Barbara Ann Sherman, University of Buffalo

Barry Soroka, California Polytechnic State University, Pomona

David Vineyard, Kettering University

We thank our spouses, Audrey and Joanne, and our children for their efforts, cooper-
ation, and sacrifices in making this book happen.

Finally, we thank the users of this book. We welcome your comments, suggestions,
and ideas for improving this material. Please write in care of the publisher, McGraw-Hill,
or send electronic mail to cohoon@virginia.edu or jwd@virginia.edu.

JPC
J.W. D

