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Preface

The group of topics known broadly as ‘Global Analysis’ has developed considerably over
the past twenty years, to such an extent that workers in one area may sometimes be unaware
of relevant results from an adjacent area. The many variations in notation and terminology
add to the difficulty of comparing one branch of the subject with another.

Our purpose in preparing this Handbook has been to try to overcome these difficulties
by presenting a collection of articles which, together, give an overall survey of the sub-
Jject. We have been guided in this task by the MSC2000 classification, and so the scope of
the Handbook may be described by saying that it covers the 58-XX part of the classifica-
tion: ranging from the structure of manifolds, through the vast area of partial differential
equations, to particular topics with their own distinctive flavour such as holomorphic bun-
dles, harmonic maps, variational calculus and non-commutative geometry. The coverage
is not complete, but we hope that it is sufficiently broad to provide a useful reference for
researchers throughout global analysis, and that it will also be of benefit to mathematical
physicists and to PhD and post-doctoral students in both areas.

The main work involved in the preparation of the Handbook has, of course, been that
of the authors of the articles, who have carried out their task with skill and professional-
ism. Our debt to them is immediate and obvious. Some other potential authors have, for
personal reasons, been unable to offer contributions to the Handbook, but we hope that
those omissions will not detract too much from its value. The editors also wish to ac-
knowledge the assistance of Petr Volny in the formatting of the I£TgX manuscripts, and of
Andy Deelen, Kristi Green and Simon Pepping at Elsevier for their help and advice during
the preparation of the book. In addition, we should like to record our particular thanks
to Arjen Sevenster from Elsevier, who commissioned the project and gave us support and
encouragement during its development.

We should finally like to acknowledge the support of the Czech Science Foundation
(grant 201/06/0922) and the Czech Ministry of Education, Youth, and Sports (grant MSM
6198959214) for our work on this project.

Demeter Krupka
David Saunders

Palacky University, Olomouc.
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Global aspects of Finsler geometry'

Tadashi Aikou and Laszlo Kozma

Contents

W

Finsler metrics and connections

2 Geodesics in Finsler manifolds

3 Comparison theorems: Cartan-Hadamard theorem, Bonnet-Myers theorem,
Laplacian and volume comparison

4 Rigidity theorems: Finsler manifolds of scalar curvature
and locally symmetric Finsler metrics

5 Closed geodesics on Finsler manifolds, sphere theorem

and the Gauss-Bonnet formula

1 Finsler metrics and connections

1.1 Finsler metrics

Let 7w : TM — M be the tangent bundle of a connected smooth manifold M of dim M =
n. We denote by v = (x, y) the points in T'M if y € 7~ (z) = T,,M. We denote by z(M)
the zero section of 7'M, and by 7'M * the slit tangent bundle 7'M\ z(M ). We introduce
a coordinate system on 7'M as follows. Let U C M be an open set with local coordinate
(z',---,2™). By settingv = )" y* (9/0x") _forevery v € 7~ (U), we introduce a local
coordinate (z,y) = (x!,--- ,2™,y',--- ,y™) on w1 (V).

Definition 1.1 A function F': T'M — R is called a Finsler metric on M if

(1) F(z,y) > 0,and F(xz,y) = 0if and only if y = 0,
(2) F(z,\y) = AF(z,y)forVA e Rt = {A e R: X > 0},

(3) F(x,y) is smooth on 7'M *, the out-side of the zero section,

! Tadashi Aikou: work supported in part by Grant-in-Aid for Scientific Research No. 17540086(2006),
The Ministry of Education, Science Sports and Culture. Ldszl6 Kozma: partially supported by the Hungarian
Scientific Research Fund OTKA T048878.



2 Global aspects of Finsler geometry

(4) G = F?/2is strictly convex on each tangent space T, M, that is, the Hessian (G;)
defined by
0*G

Glj (I l/) 8yldy}

(1.1)
is positive-definite,

are satisfied. The pair (M, F') is called a Finsler manifold.

We note that the last condition in this definition is equivalent to the convexity of the
unitball B, = {y € T, M | F(z,y) < 1}.

If a Finsle1 metric F' is deﬁned then the norm ||y|| of each y € T, M is defined by
lyl| = ), and the length ) of a smooth curve ¢(t) = (z1(t),--- ,2"(t)) is defined

by s(t /W|ua /F (1)) dt.

Example 1.2 ( F unk metrzc) Let g be a Riemannian metric on M. We define o : TM — R
by a(v) = \/g(v,v). Since « is convex, there exists a 1-from /3 such that 3(v) < a(v).
The function F' = a + (3 defines a convex Finsler metric on M so-called Randers metric.
We shall review a typical example of Randers metric (see [37] or [14]). Let R™ be an
n-dimensional Euclidean space with the standard coordinate (z!,--- ,2"), and B the unit
ball centered the origin: B = {x € R" | ¢(x) = 1 — ||z||* > 0}. The Riemannian metric
g defined by

)2 § g pi)2
(1= ||=l*) (3 da?)” + (X ada?)
= 2
e
is called the Hilbert metric on B. We define a 1-form /3 by
S atdz 1
B==""— _dlog¢.
1 — [|]| 2
The norm ||3]| ;; of /3 with respect to g is given by ||3(z)||; = ||z]| < 1, and thus the

function F' on B defined by F'(v) = /gu(v,v) + [(v) is a Finsler metric called the Funk
metric on B. We note that the relation between gy and F' is given by

1
vl = 5 [F(0) + F (o)
forallv € T'M.

For the differential 7, of the submersion 7 : TM* — M, the vertical subbundle V
of T(T'M*) is defined by V' = ker 7, and V is locally spanned by {0/dy*,--- ,8/0y™}
on each 71 (U). Then it induces the exact sequence

0— V- T(TM*) I TM — 0, (1.2)
where TM = {(y,v) € TM* x TM |v € Ty(,, M} is the pull-back bundle 7*T M.

TM TM

TM* M
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Since the natural local frame field {0/0x%};—1 ... , on each U is identified with the one of
TM on n~1(U), any section X of T'M is written in the form X = 3(8/0z%) @ X' for
smooth functions X on each 7~ !(U). Furthermore, since ker 7, = V/, the differential
is given by m, = > (9/02") ® da’.

We define a metric G on the bundle 7'M by

G(X,Y) =) GyX'Y (1.3)

for every section X = >.(9/0r") @ X' and Y = > (9/0x7) ® Y7. We also set

e = l(’?gij o 1 83[/2
IR T2 0yk T 40yt Oyl oYk

Then we define a symmetric tensor field C' : ®3TM — R by
C(X,Y,Z) = Z Ciju XY Z* (1.4)

for all sections X, Y, Z of TM. Itis trivial that C' vanishes identically if and only if G is
a Riemannian metric on M. This tensor field C' is called the Cartan tensor field.

In the sequel, we use the notation Ao(m) for the space of smooth sections of TM.
Since TM is naturally identified with V' = ker 7., any section X of TM is considered as
a section of V. We denote by XV the section of V' corresponding to X € A%(T'M):

0
oz’

ATM)>3X=) ——oX Z%@Xﬂ:){"eAO(V).

The following is trivial since (1.2) is exact.
T (XV)=0 (1.5)
for every X € A%(T'M).

The multiplier group R™ = {c¢I € GL(n,R); ¢ € Rt} € GL(n,R) acts on the total
space by multiplication

my:TM* >v=(v,y) = \v=(x,\y) € TM*

for every A € RT. This action induces a canonical section £ of V' defined by £(v) = (v, v)
for all v € T'M *. By the homogeneity of F', we have

E(F) F(z,y+1t€)=F.

t=0

Tt

We shall consider € as a section of 7'M, and we denote it by the same notation &, that is,

E(x,y) = >.(0/0x") @ y'. This section & is called the tautological section of TM. Then
it is easily shown that F' = \/G(&, &) and

C(E,0,0) =0. (1.6)
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1.2 Ehresmann connection

For the submersion 7w : T'M* — M, the vertical subbundle is defined by V' = ker .,
while the horizontal subbundle H is defined by a subbundle H C T'(7'"M*) which is
complementary to V. These subbundles give a smooth splitting

T(TM*)=H®a®V. (1.7)

Although the vertical subbundle V' is uniquely determined, the horizontal subbundle is not
canonically determined. An Ehresmann connection of the submersion 7 : TM* — M is
a selection of horizontal subbundles. In this report, we shall define this as follows.

Definition 1.3 An Ehresmann connection of the submersion 7 : T'M * — M is a bundle
morphism 0 : T(T'M*) — T M satisfying
6xXV)=X (1.8)

for every X € A°(TM).

If an Ehresmann connection 6 is given, then a horizontal subbundle H is defined by
H = ker 6. In this report, we shall assume that the subbundle H defined by € is invariant
by the action my,, that is, (m, ). H = Hom, forall A € R". This assumption is equivalent
to

LeHH C H. (1.9)

Remark 1.4 A linear connection of the tangent bundle 7'M is a selection of horizontal
subbundles in GL(n,R)-invariant way. Thus, an Ehresmann connection 6 in our sense is
sometimes called a non-linear connection of T'M..

In the sequel, we denote by A* and A"‘(fj\/l) the space of smooth k-forms and TM-
valued k-form on 7'M * respectively. We suppose that an Ehresmann connection 6 is given.
Then, the exterior differential d : A*¥ — A*+1is decomposed into the form d = d” & dv
according to the decomposition (1.7), where d’ is the differential along H and d" l§ the
one along V. If a covariant derivation D : AO(T]\[) — AI(T]\[) of the bundle 7'M is
also decomposed into the form D = D ¢ DV.

Proposition 1.5 If an Ehresmann connection 0 is given, then there exists a covariant exte-
rior derivation D of T'M satisfying

0=DE, (1.10)
or equivalently
DFE=q. (1.11)

Proof We define a covariant derivation D by DV = d" and DY = [X" Y'V] for all

XY e AO(TI\I) It is easily shown that D = D ¢ d" is a covariant derivation on TM.
Then we have

DYE=XV(&) =XV =9(X)

and, from (1.9) we obtain

DHE =0[XH €] = —0(LeXH) = 0.
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Therefore we obtain (1.11). O

Since we are concerned with the tangent bundle, TM is also naturally identified with
the horizontal subbundle H, and any section X of T'M is considered as a section of H.
We denote by X 7 the section of H corresponding to X € A%(T'M):

A°(T M) 9X:Z%®X¢ — Z(;i@Xi = XH e A%(H),

i
where
S _ (2N 8 (9"
szl \ Ozt T Tsxn \ 92
denotes the horizontal lift of natural local frame field {8/ Ax, -+ 0l Bm"} with respect
to the given Ehresmann connection 6. The set {dx!, - - -, da"™} is the dual basis of H*. For

the two bundle morphism 7, and 6 from 7'(T'M *) onto T'M, we have
Proposition 1.6 The bundle morphisms 7. and 0 satisfy

1 (XH) =X, w (XV)=0 (1.12)
and
g(XT) =0, (XY)=X (1.13)

for every X € AO(T:]\V/[).

1.3 Chern connection

If a Finsler metric F is given on 7'M, then there exists a natural metric G on TM defined
by (1.3). Then we shall introduce a covariant derivation V which satisfies some natural
axioms.

For a given covariant derivation ¥ on 7/:]\7, we always define an Ehresmann connection
0:T(TM*)— TM by

¢'= VE. (1.14)

With respect to the splitting (1.7), V is also decomposed into the form V = V7 @ v,
Definition 1.7 ([10]) The Chern connection on (M, F') is a covariant exterior differentia-
tion V : AK(T'M) — AF+1(T M) uniquely determined from the following conditions.

(1) V is symmetric:
Ve =10, (1.15)
where we considered 7, = 3(9/0x") ® da’ as a section of A*(T'M).
(2) V is almost G-compatible:

vEG =o. (1.16)



6 Global aspects of Finsler geometry

Remark 1.8 In the case of C' = 0, the metric F' is the norm function of a Riemannian metric
g, and the Chern connection V is given by V = 7*V™ for the Levi-Civita connection V/
of (M, g). The Chern connection is also called the Rund connection of (M, F) (cf. [3],
[12] [32]).

We can easily show that  defined by (1.14) is invariant by the natural action m, of
R*. In local coordinate, 6 is given by

1= (S gmer) =X g (' + Loiw),

where w} is the connection forms of V with respect to {9/dz",- - .8/81'"}. The set
{6",---,0"} of 1-forms defined by ' = dy' + > wiy’ (i = 1,--- ,n) is the dual basis
of V* defined by 6.

Then the covariant derivative V is also decomposed into the form V = v o v,
where V¥ : AYTM) — AY(TM ® H*) is defined by VEY = VxuY, and VV :
AYTM) — AYTM ® V*) is defined by VY = VxvY forall X,Y € A°(TM)
respectively. The covariant derivative VG of the metric G is decomposed into the form
VG = VPG 4+ VvV G, and thus the assumption (1.16) is equivalent to VI)'(IG = 0:

XPE. 0y =GV EY, Z) L G, B3 Z) (1.17)
forall XY, Z € AO(TTJVI). By the definition (1.4) of Cartan tensor field C, we have
(VXO)(Y, 2) = 20(X,Y, 2) (1.18)

forall X,Y,Z € A°(TM).
On the other hand, (1.17) implies V& = §(X ") = 0 and

XHF? = X"G(E,€) = G(VXE,E) + G(E,VXKE) = 0.

Therefore we obtain

Proposition 1.9 Let § € Al(m) be the Ehresmann connection of # : TM* — M
defined by (1.14) for the Chern connection NV of (M, F'). Then we have

d2F =0. (1.19)

Since the condition (1.15) is equivalent to w§ A dx? = 0, the connection form w is
given in the form w% = 37 I'l; (, y)dz* with the coefficients I}, satisfying the symmetric
property I}, = I'{,. Then the condition (1.17) is written as d” G — *wG — Gw = 0, and
thus the coefficients I}, are given by

1 1~ (6Cu 8G &Gy
ik(®y) = §ZG (6171 T szk ozl ) L)

where (G'7) denotes the inverse of (G;).



Tadashi Aikou and Ldszlo Kozma 7

1.4 Parallel translation

Let (M, F)bea Finsler manifold with the Chern connection V. For a non-vanishing vector
field v = " v'(x)(0/0z') on M, we define its covariant derivative Vv with respect to V.
Letv : M — T]\I be the natural lift of v defined by v(z) = E(v(x)) = (v*E)(x). The
covariant derivative Vv with respect to V is given by Vv = 0*VE = 0*6:

Vv =9*VE = Z % ® (dv* + Z ij]?k(ar.v)d:rk). (1.21)

If v satisfies Vo = 0, then v is said to be parallel with respect to V.

Let ¢ = (x(t)) : I = [0,1] — M be a smooth curve, and v(¢) be a non-vanishing
vector field along c. Then we define a lift ¢, : I — T'M* of cby ¢, = (z(t),v(t)). A lift
¢, is said to be horizontal if it satisfies ¢,0 = 0:

dv = i B dxk
BaVE = Zaaz {—+ v’ () ik ((fu(t))—df—} =0. (1.22)

If v(t) satisfies this equation, v(t) is said to be parallel along c.

The system (1.22) has a unique solution v¢(t) which depends on the initial condition
¢ = v¢(0) smoothly. From smooth dependence of solutions on ¢, the mapping P, :
TeoyM — T.4yM defined by P.;)(¢) = (c(t),v¢(t)) is a diffeomorphism for every
t € I. Because of homogeneity of 6, if v¢(t) is a solution of (1.22), then Av¢(t) is also a
solution satisfying Av¢(0) = AC, and thus the uniqueness of solutions implies that vy (1) =
Ave(t). Hence the horizontal lift ¢, (f) of a curve c starting at ¢ € T,y M satisfies the
homogeneity ¢y, (t) = (c(t), Ave(t)) = Aéy(t), and P, also satisfies the homogeneity

Pety(A) = AP,y (¢) forall A > 0 and ¢ € T¢gyM. The family P. = {P.;) : t € I} is
called the parallel translation along ¢ with respect to V.

The tangent space 7, M at every point = € M becomes a normed linear space with a
norm || e || = F(x,e ). If we put P,;)(¢) = (c(t), v¢(t)) for any point ¢ in T7,(g) M, the
norm ||v¢ (t)|| of the vector field v¢ (t) along ¢(t) is given by F' (¢(t),v¢(t)). Then, because
of Proposition 1.9 we have

dF(c(t),ve(t)) = d(@F) = &(dVF + d"F) = &(d" F) = 0.

Hence the parallel translation P. is norm-preserving: || Pe(s) (C)lle(t) = €] (0

Proposition 1.10 The parallel translation P, along any curve ¢ = c(t) on M is a norm-
preserving map between the tangential normed-spaces.

The parallel translation P. is said to be isometry if it satisfies
|| Pecey (€) — c(t)(ﬂ)”q =< —ll, (1.23)

for all ¢,n € T, M. The parallel translation P, along a curve ¢ = c(t) is norm-preserving,
but not isometry in general. It is trivial that, if P. is a linear mapping, then F. is an
isometry. In a later section, we shall consider the case where every tangent spaces are
isometric mutually as normed linear spaces.

We denote by C,, the set of all (piecewise) smooth curves ¢ with starting point p = ¢(0)
and ending point p = ¢(1). Then there exists a natural product ”o” in C),. We also set



