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Preface

This is the third edition of a book that deals with the processes involved in
converting a mathematical or geometric description of an object — a computer
graphics model - into a visualization - a two-dimensional projection — that
simulates the appearance of a real object. The analogy of a synthetic camera is
often used and this is a good allusion provided we bear in mind certain important
limitations that are not usually available in a computer graphics camera (depth of
field and motion blur are two examples) and certain computer graphics facilities
that do not appear in a camera (near and far clipping planes).

Algorithms in computer graphics mostly function in a three-dimensional
domain and the creations in this space are then mapped into a two-dimensional
display or image plane at a late stage in the overall process. Traditionally com-
puter graphics has created pictures by starting with a very detailed geometric
description, subjecting this to a series of transformations that orient a viewer
and objects in three-dimensional space, then imitating reality by making the
objects look solid and real — a process known as rendering. In the early 1980s
there was a coming together of research — carried out in the 1970s into reflection
models, hidden surface removal and the like — that resulted in the emergence of
a de facto approach to image synthesis of solid objects. But now this is proving
insufficient for the new demands of moving computer imagery and virtual re-
ality and much research is being carried out into how to model complex objects,
where the nature and shape of the object changes dynamically and into captur-
ing the richness of the world without having to explicitly model every detail.
Such efforts are resulting in diverse synthesis methods and modelling methods
but at the moment there has been no emergence of new image generation tech-
niques that rival the pseudo-standard way of modelling and rendering solid
objects — a method that has been established since the mid-1970s.

So where did it all begin? Most of the development in computer graphics as
we know it today was motivated by hardware evolution and the availability of
new devices. Software rapidly developed to use the image producing hardware.
In this respect the most important development is the so-called raster display, a
device that proliferated in the mass market shortly after the development of the
PC. In this device the complete image is stored in a memory variously called a
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frame store, a screen buffer or a refresh memory. This information - the dis-
cretized computer image — is continually converted by a video controller into a
set of horizontal scan lines (a raster) which is then fed to a TV-type monitor. The
image is generated by an application program which usually accesses a model or
geometric description of an object or objects. The main elements in such a sys-
tem are shown in Figure P.1. The display hardware to the right of the dotted line
can be separate to the processor, but nowadays is usually integrated as in the case
of an enhanced PC or a graphics workstation. The raster graphics device over-
shadows all other hardware developments in the sense that it made possible the
display of shaded three-dimensional objects — the single most important theo-
retical development. The interaction of three-dimensional objects with a light
source could be calculated and the effect projected into two-dimensional space
and displayed by the device. Such shaded imagery is the foundation of modern
computer graphics.

The two early landmark achievements that made shaded imagery possible are
the algorithms developed by Gouraud in 1971 and Phong in 1975 enabling easy
and fast calculation of the intensities of pixels when shading an object. The
Phong technique is still in mainstream use and is undoubtedly responsible for
most of the shaded images in computer graphics.

A brief history of shaded imagery

When we look at computer graphics from the viewpoint of its practitioners, we
see that since the mid-1970s the developmental motivation has been photo-
realism or the pursuit of techniques that make a graphics image of an object or
scene indistinguishable from a TV image or photograph. A more recent strand of
the application of these techniques is to display information in, for example,
medicine, science and engineering.

The foundation of photo-realism is the calculation of light-object interaction
and this splits neatly into two fields — the development of local reflection
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models and the development of global models. Local or direct reflection models
only consider the interaction of an object with a light source as if the object and
light were floating in dark space. That is, only the first reflection of light from
the object is considered. Global reflection models consider how light reflects
from one object and travels onto another. In other words the light impinging on
a point on the surface can come either from a light source (direct light) or indi-
rect light that has first hit another object. Global interaction is for the most part
an unsolved problem, although two partial solutions, ray tracing and radiosity,
are now widely implemented.

Computer graphics research has gone the way of much modern scientific
research — early major advances are created and consolidated into a practical
technology. Later significant advances seem to be more difficult to achieve. We
can say that most images are produced using the Phong local reflection model
(first reported in 1975), fewer using ray tracing (first popularized in 1980) and
fewer still using radiosity (first reported in 1984). Although there is still much
research being carried out in light-scene interaction methodologies much of the
current research in computer graphics is concerned more with applications, for
example, with such general applications as animation, visualization and virtual
reality. In the most important computer graphics publication (the annual SIG-
GRAPH conference proceedings) there was in 1985 a total of 22 papers con-
cerned with the production techniques of images (rendering, modelling and
hardware) compared with 13 on what could loosely be called applications. A
decade later in 1995 there were 37 papers on applications and 19 on image pro-
duction techniques.

Modelling surface reflection with local interaction

Two early advances which went hand-in-hand were the development of hidden
surface removal algorithms and shaded imagery - simulating the interaction of
an object with a light source. Most of the hidden surface removal research was
carried out in the 1970s and nowadays, for general-purpose use, the most com-
mon algorithm is the Z-buffer — an approach that is very easy to implement and
combine with shading or rendering algorithms.

In shaded imagery the major prop is the Phong reflection model. This is an
elegant but completely empirical model that usually ends up with an object
reflecting more light than it receives. Its parameters are based on the grossest
aspects of reflection of light from a surface. Despite this, it is the most widely
used model in computer graphics — responsible for the vast majority of created
images. Why is this so? Probably because users find it adequate and it is easy to
implement.

Theoretically based reflection models attempt to model reflection more accu-
rately and their parameters have physical meaning — that is they can be mea-
sured for a real surface. For example, light reflects differently from an isotropic
surface, such as plastic, compared to its behaviour with a non-isotropic surface
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such as brushed aluminium and such an effect can be imitated by explicitly
modelling the surface characteristics. Such models attempt to imitate the behav-
iour of light at a ‘milliscale’ level (where the roughness or surface geometry is
still much greater than the wavelength of light). Their purpose is to imitate the
material signature — why different materials in reality look different.
Alternatively, parameters of a model can be measured on a real surface and used
in a simulation. The work into more elaborate or theoretical local reflection
models does not seem to have gained any widespread acceptance as far as its
implementation in rendering systems is concerned. This may be due to the fact
that users do not perceive that the extra processing costs are worth the some-
what marginal improvement in the appearance of the shaded object.

All these models, while attending to the accurate modelling of light from a
surface, are local models which means that they only consider the interaction of
light with the object as if the object was floating in free space. No object-object
interaction is considered and one of the main problems that immediately arises
is that shadows — a phenomenon due to global interaction — are not incorporated
into the model and have to be calculated by a separate ‘add-on’ algorithm.

The development of the Phong reflection model spawned research into add-
on shadow algorithms and texture mapping, both of which enhanced the
appearance of the shaded object and tempered the otherwise ‘floating in free
space’ plastic look of the basic Phong model.

Modelling global interaction

The 1980s saw the development of two significant global models — light reflec-
tion models that attempt to evaluate the interaction between objects. Global
interaction gives rise to such phenomena as the determination of the intensity
of light within a shadow area, the reflection of objects in each other (specular
interaction) and a subtle effect known as colour bleeding where the colour from
a diffuse surface is transported to another nearby surface (diffuse interaction).
The light intensity within a shadow area can only be determined from global
interaction. An area in shadow, by definition, cannot receive light directly from
a light source but only indirectly from light reflecting from another object.
When you see shiny objects in a scene you expect to see in them reflections of
other objects. A very shiny surface, such as chromium plate, behaves almost as
a mirror taking all its surface detail from its surroundings and distorting this geo-
metrically according to surface curvature.

The successful global models are ray tracing and radiosity. However, in their
basic implementation both models only cater for one aspect of global illumina-
tion. Ray tracing attends to perfect specular reflection — very shiny objects
reflecting in each other, and radiosity models diffuse interaction which is light
reflecting off matte surfaces to illuminate other surfaces. Diffuse interaction is
common in man-made interiors which tend to have carpets on the floor and
matte finishes on the walls. Areas in a room that cannot see the light source are



illuminated by diffuse interaction. Mutually exclusive in the phenomena they
model, images created by both methods tend to have identifying ‘signatures’.
Ray-traced images are notable for perfect recursive reflections and super sharp
refraction. Radiosity images are usually of softly-lit interiors and do not contain
specular or shiny objects.

Computer graphics is not an exact science. Much research in light-surface
interaction in computer graphics proceeds by taking existing physical models
and simulating then with a computer graphics algorithm. This may involve
much simplification in the original mathematical model so that it can be imple-
mented as a computer graphics algorithm. Ray tracing and radiosity are classic
examples of this tendency. Simplifications, which may appear gross to a mathe-
matician, are made by computer graphicists for practical reasons. The reason this
process ‘works’ is that when we look at a synthesized scene we do not generally
perceive the simplifications in the mathematics unless they result in visible
degeneracies known as aliases. However, most people can easily distinguish a
computer graphics image from a photograph. Thus computer graphics have a
‘realism’ of their own that is a function of the model, and the nearness of the
computer graphics image to a photograph of a real scene varies widely accord-
ing to the method. Photo-realism in computer graphics means the image looks
real not that it approaches, on a pixel by pixel basis, a photograph. This subjec-
tive judgement of computer graphics images somewhat devalues the widely used
adjective ‘photo-realistic’, but there you are. With one or two exceptions very lit-
tle work has been done on comparing a human’s perception of a computer
graphics image with, say, a TV image of the equivalent real scene.
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