Alan Watt | third Edition

3D Computer Graphics

vAv ADDISON-WESLEY ‘o’

3D
Computer
Graphics

THIRD EDITION

ALAN WATT

vy ADDISON-WESLEY

An imprint of PEARSON EDUCATION
Harlow, England - London - New York - Reading, Massachusetts - San Francisco - Toronto - Don Mills, Ontario - Sydney
Tokyo - Singapore - Hong Kong - Seoul - Taipei - Cape Town - Madrid - Mexico City - Amsterdam - Munich - Paris - Milan

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies around the world

Visit us on the World Wide Web at:
www.pearsoned-ema.com

First published 1989
Second edition 1993
This edition first published 2000

© 1989, 1993 Addison-Wesley Publishing Ltd, Addison-Wesley Publishing Company Inc.
© Pearson Education Limited 2000

The right of Alan Watt to be identified as author of
this work has been asserted by him in accordance with
the Copyright, Designs, and Patents Act 1988.

All rights reserved; no part of this publication may be reproduced, stored

in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise without either the prior
written permission of the Publishers or a licence permitting restricted copying
in the United Kingdom issued by the Copyright Licensing Agency Ltd,

90 Tottenham Court Road, London W1P OLP.

The programs in this book have been included for their instructional value.

The publisher does not offer any warranties or representation in respect of their
fitness for a particular purpose, nor does the publisher accept any liability for any
loss or damage (other than for personal injury or death) arising from their use.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Pearson Education Limited has made every
attempt to supply trademark information about manufacturers and their products
mentioned in this book. A list of trademark designations and their owners
appears on page xxii.

ISBN 0 201 39855 9

British Library Cataloguing-in-Publication Data
A catalogue record for this book can be obtained from the British Library.

Library of Congress Cataloging-in-Publication Data
Available from the publisher.

Typeset by 42
Printed and bound in The United States of America

Preface

This is the third edition of a book that deals with the processes involved in
converting a mathematical or geometric description of an object — a computer
graphics model - into a visualization - a two-dimensional projection — that
simulates the appearance of a real object. The analogy of a synthetic camera is
often used and this is a good allusion provided we bear in mind certain important
limitations that are not usually available in a computer graphics camera (depth of
field and motion blur are two examples) and certain computer graphics facilities
that do not appear in a camera (near and far clipping planes).

Algorithms in computer graphics mostly function in a three-dimensional
domain and the creations in this space are then mapped into a two-dimensional
display or image plane at a late stage in the overall process. Traditionally com-
puter graphics has created pictures by starting with a very detailed geometric
description, subjecting this to a series of transformations that orient a viewer
and objects in three-dimensional space, then imitating reality by making the
objects look solid and real — a process known as rendering. In the early 1980s
there was a coming together of research — carried out in the 1970s into reflection
models, hidden surface removal and the like — that resulted in the emergence of
a de facto approach to image synthesis of solid objects. But now this is proving
insufficient for the new demands of moving computer imagery and virtual re-
ality and much research is being carried out into how to model complex objects,
where the nature and shape of the object changes dynamically and into captur-
ing the richness of the world without having to explicitly model every detail.
Such efforts are resulting in diverse synthesis methods and modelling methods
but at the moment there has been no emergence of new image generation tech-
niques that rival the pseudo-standard way of modelling and rendering solid
objects — a method that has been established since the mid-1970s.

So where did it all begin? Most of the development in computer graphics as
we know it today was motivated by hardware evolution and the availability of
new devices. Software rapidly developed to use the image producing hardware.
In this respect the most important development is the so-called raster display, a
device that proliferated in the mass market shortly after the development of the
PC. In this device the complete image is stored in a memory variously called a

PREFACE

__

Figure P.1

i Processor ‘ Display hardware i

| Model ‘ 3

| databases | |

e i Vi
Apoiicatins i Processes T Frame store > s
program IR | controller

i ?

R S T
[

Interaction |

The main elements of a

graphics system.

<O

frame store, a screen buffer or a refresh memory. This information - the dis-
cretized computer image — is continually converted by a video controller into a
set of horizontal scan lines (a raster) which is then fed to a TV-type monitor. The
image is generated by an application program which usually accesses a model or
geometric description of an object or objects. The main elements in such a sys-
tem are shown in Figure P.1. The display hardware to the right of the dotted line
can be separate to the processor, but nowadays is usually integrated as in the case
of an enhanced PC or a graphics workstation. The raster graphics device over-
shadows all other hardware developments in the sense that it made possible the
display of shaded three-dimensional objects — the single most important theo-
retical development. The interaction of three-dimensional objects with a light
source could be calculated and the effect projected into two-dimensional space
and displayed by the device. Such shaded imagery is the foundation of modern
computer graphics.

The two early landmark achievements that made shaded imagery possible are
the algorithms developed by Gouraud in 1971 and Phong in 1975 enabling easy
and fast calculation of the intensities of pixels when shading an object. The
Phong technique is still in mainstream use and is undoubtedly responsible for
most of the shaded images in computer graphics.

A brief history of shaded imagery

When we look at computer graphics from the viewpoint of its practitioners, we
see that since the mid-1970s the developmental motivation has been photo-
realism or the pursuit of techniques that make a graphics image of an object or
scene indistinguishable from a TV image or photograph. A more recent strand of
the application of these techniques is to display information in, for example,
medicine, science and engineering.

The foundation of photo-realism is the calculation of light-object interaction
and this splits neatly into two fields — the development of local reflection

PREFACE

models and the development of global models. Local or direct reflection models
only consider the interaction of an object with a light source as if the object and
light were floating in dark space. That is, only the first reflection of light from
the object is considered. Global reflection models consider how light reflects
from one object and travels onto another. In other words the light impinging on
a point on the surface can come either from a light source (direct light) or indi-
rect light that has first hit another object. Global interaction is for the most part
an unsolved problem, although two partial solutions, ray tracing and radiosity,
are now widely implemented.

Computer graphics research has gone the way of much modern scientific
research — early major advances are created and consolidated into a practical
technology. Later significant advances seem to be more difficult to achieve. We
can say that most images are produced using the Phong local reflection model
(first reported in 1975), fewer using ray tracing (first popularized in 1980) and
fewer still using radiosity (first reported in 1984). Although there is still much
research being carried out in light-scene interaction methodologies much of the
current research in computer graphics is concerned more with applications, for
example, with such general applications as animation, visualization and virtual
reality. In the most important computer graphics publication (the annual SIG-
GRAPH conference proceedings) there was in 1985 a total of 22 papers con-
cerned with the production techniques of images (rendering, modelling and
hardware) compared with 13 on what could loosely be called applications. A
decade later in 1995 there were 37 papers on applications and 19 on image pro-
duction techniques.

Modelling surface reflection with local interaction

Two early advances which went hand-in-hand were the development of hidden
surface removal algorithms and shaded imagery - simulating the interaction of
an object with a light source. Most of the hidden surface removal research was
carried out in the 1970s and nowadays, for general-purpose use, the most com-
mon algorithm is the Z-buffer — an approach that is very easy to implement and
combine with shading or rendering algorithms.

In shaded imagery the major prop is the Phong reflection model. This is an
elegant but completely empirical model that usually ends up with an object
reflecting more light than it receives. Its parameters are based on the grossest
aspects of reflection of light from a surface. Despite this, it is the most widely
used model in computer graphics — responsible for the vast majority of created
images. Why is this so? Probably because users find it adequate and it is easy to
implement.

Theoretically based reflection models attempt to model reflection more accu-
rately and their parameters have physical meaning — that is they can be mea-
sured for a real surface. For example, light reflects differently from an isotropic
surface, such as plastic, compared to its behaviour with a non-isotropic surface

PREFACE (Xix)

such as brushed aluminium and such an effect can be imitated by explicitly
modelling the surface characteristics. Such models attempt to imitate the behav-
iour of light at a ‘milliscale’ level (where the roughness or surface geometry is
still much greater than the wavelength of light). Their purpose is to imitate the
material signature — why different materials in reality look different.
Alternatively, parameters of a model can be measured on a real surface and used
in a simulation. The work into more elaborate or theoretical local reflection
models does not seem to have gained any widespread acceptance as far as its
implementation in rendering systems is concerned. This may be due to the fact
that users do not perceive that the extra processing costs are worth the some-
what marginal improvement in the appearance of the shaded object.

All these models, while attending to the accurate modelling of light from a
surface, are local models which means that they only consider the interaction of
light with the object as if the object was floating in free space. No object-object
interaction is considered and one of the main problems that immediately arises
is that shadows — a phenomenon due to global interaction — are not incorporated
into the model and have to be calculated by a separate ‘add-on’ algorithm.

The development of the Phong reflection model spawned research into add-
on shadow algorithms and texture mapping, both of which enhanced the
appearance of the shaded object and tempered the otherwise ‘floating in free
space’ plastic look of the basic Phong model.

Modelling global interaction

The 1980s saw the development of two significant global models — light reflec-
tion models that attempt to evaluate the interaction between objects. Global
interaction gives rise to such phenomena as the determination of the intensity
of light within a shadow area, the reflection of objects in each other (specular
interaction) and a subtle effect known as colour bleeding where the colour from
a diffuse surface is transported to another nearby surface (diffuse interaction).
The light intensity within a shadow area can only be determined from global
interaction. An area in shadow, by definition, cannot receive light directly from
a light source but only indirectly from light reflecting from another object.
When you see shiny objects in a scene you expect to see in them reflections of
other objects. A very shiny surface, such as chromium plate, behaves almost as
a mirror taking all its surface detail from its surroundings and distorting this geo-
metrically according to surface curvature.

The successful global models are ray tracing and radiosity. However, in their
basic implementation both models only cater for one aspect of global illumina-
tion. Ray tracing attends to perfect specular reflection — very shiny objects
reflecting in each other, and radiosity models diffuse interaction which is light
reflecting off matte surfaces to illuminate other surfaces. Diffuse interaction is
common in man-made interiors which tend to have carpets on the floor and
matte finishes on the walls. Areas in a room that cannot see the light source are

illuminated by diffuse interaction. Mutually exclusive in the phenomena they
model, images created by both methods tend to have identifying ‘signatures’.
Ray-traced images are notable for perfect recursive reflections and super sharp
refraction. Radiosity images are usually of softly-lit interiors and do not contain
specular or shiny objects.

Computer graphics is not an exact science. Much research in light-surface
interaction in computer graphics proceeds by taking existing physical models
and simulating then with a computer graphics algorithm. This may involve
much simplification in the original mathematical model so that it can be imple-
mented as a computer graphics algorithm. Ray tracing and radiosity are classic
examples of this tendency. Simplifications, which may appear gross to a mathe-
matician, are made by computer graphicists for practical reasons. The reason this
process ‘works’ is that when we look at a synthesized scene we do not generally
perceive the simplifications in the mathematics unless they result in visible
degeneracies known as aliases. However, most people can easily distinguish a
computer graphics image from a photograph. Thus computer graphics have a
‘realism’ of their own that is a function of the model, and the nearness of the
computer graphics image to a photograph of a real scene varies widely accord-
ing to the method. Photo-realism in computer graphics means the image looks
real not that it approaches, on a pixel by pixel basis, a photograph. This subjec-
tive judgement of computer graphics images somewhat devalues the widely used
adjective ‘photo-realistic’, but there you are. With one or two exceptions very lit-
tle work has been done on comparing a human’s perception of a computer
graphics image with, say, a TV image of the equivalent real scene.

'

Acknowledgements

The author would like to thank the following:

Lightwork Design Ltd (Sheffield, UK) and Dave Cauldron for providing the
facilities to produce the front cover image (model of the Tate Gallery, St Ives,
UK) and the renderer, RadioRay.

Daniel Teece for the images on the back cover which he produced as part of
his PhD thesis and which comprise three-dimensional paint strokes
interactively applied to a standard polygon model.

Lee Cooper for producing Figures 6.12, 7.8, 8.7, 8.10, 10.4, 18.1, 18.3, 18.5,
18.6, 18.7, 18.8, 18.9, 18.10, 18.11, 18.12, 18.13, 18.14, 18.16, 18.17 and
18.19 together with the majority of images on the CD-ROM. These were
produced using Lightworks Application Development System kindly
supplied by Lightwork Design Ltd.

Mark Fuller for Figure 13.1.

Steve Maddock for Figures 1.5, 4.9, 8.8, 8.26.
Agata Opalach for Figure 2.20.

Klaus de Geuss for Figures 13.10 and 13.11.
Guy Brown for Figure 16.19.

Fabio Policarpo for Figure 8.14.

IMDM University, Hamburg, for Figure 13.3.

In addition the author would like to thank Keith Mansfield, the production staff at
Addison-Wesley and Robert Chaundy of Bookstyle for his care with the manuscript.

The publishers are grateful to the following for permission to reproduce copyright
material:

Figure 2.1 reproduced with the permission of Viewpoint Digital, Inc.; Figure 2.4
from Tutorial: Computer Graphics, 2e (Beatty and Booth, 1982), © 1982 IEEE, The
Institute of Electrical and Electronics Engineers, Inc., New York; Figures 2.7 and 2.8
from Generative Modelling for Computer Graphics and CAD (Snyder, 1992), Academic

ACKNOWLEDGEMENTS

Press, London; Figure 2.20 reproduced with the permission of Agata Opalach; Figure
13.3 from VOXEL-MAN, Part 1: Brain and Skull, CD-ROM for UNIX workstations and
LINUX PCs, Version 1.1 © Karl-Heinz Hohne and Springer-Verlag GmbH & Co. KG
1996, reproduced with kind permission; Figure 16.14 reproduced with the permis-
sion of Steven Seitz; Figure 17.28 from ACM Transactions on Graphics, 15:3, July 1996
(Hubbard, 1996), ACM Publications, New York.

Whilst every effort has been made to trace the owners of copyright material, in a
few cases this has proved impossible and we take this opportunity to offer our
apologies to any copyright holders whose rights we may have unwittingly
infringed.

Trademark notice

Apple™ and QuickTime™ are trademarks of Apple Computer, Inc.
Luxo™ is a trademark of Jac Jacobson Industries.

Kodak™ is a trademark of Eastman Kodak Company.
RenderMan™ is a trademark of Pixar Corporation.

VAX™ js a trademark of Digital Equipment Corporation.

3D Dataset™ is a trademark of Viewpoint Digital, Inc.

Contents

Colour plates appear between pages 506 and 507
Preface

Acknowledgements

Mathematical fundamentals of computer graphics

1.1 Manipulating three-dimensional structures
1.1.1 Three-dimensional geometry in computer graphics -
affine transformations
1.1.2 Transformations for changing coordinate systems

1.2 Structure-deforming transformations

1.3 Vectors and computer graphics
1.3.1 Addition of vectors
1.3.2 Length of vectors
1.3.3 Normal vectors and cross products
1.3.4 Normal vectors and dot products
1.3.5 Vectors associated with the normal vector reflection

1.4 Rays and computer graphics
1.4.1 Ray geometry — intersections
1.4.2 Intersections — ray-sphere
1.4.3 Intersections — ray-convex polygon
1.4.4 Intersections — ray—box
1.4.5 Intersections — ray—quadric
1.4.6 Ray tracing geometry — reflection and refraction

1.5 Interpolating properties in the image plane

Representation and modelling of three-dimensional objects (1)
Introduction

2.1 Polygonal representation of three-dimensional objects
2.1.1 Creating polygonal objects

XVi

XXi

1
12
12
12
14
15

17
17
18
19
21
23
23

25

27
27

33
37

CONTENTS

2.2
23

2.4
255

2.6

2.1.2 Manual modelling of polygonal objects

2.1.3 Automatic generation of polygonal objects

2.1.4 Mathematical generation of polygonal objects
2.1.5 Procedural polygon mesh objects — fractal objects

Constructive solid geometry (CSG) representation of objects

Space subdivision techniques for object representation
2.3.1 Octrees and polygons

2.3.2 BSP trees

2.3.3 Creating voxel objects

Representing objects with implicit functions

Scene management and object representation
2.5.1 Polygon mesh optimization

Summary

Representation and modelling of three-dimensional objects (2)

3.1

3.2

33

3.4

3.5
3.6

3.7

Introduction

Bézier curves
3.1.1 Joining Bézier curve segments
3.1.2 Summary of Bézier curve properties

B-spline representation

3.2.1 B-spline curves

3.2.2 Uniform B-splines

3.2.3 Non-uniform B-splines

3.2.4 Summary of B-spline curve properties

Rational curves
3.3.1 Rational Bézier curves
3.3.2 NURBS

From curves to surfaces
3.4.1 Continuity and Bézier patches
3.4.2 A Bézier patch object — the Utah teapot

B-spline surface patches

Modelling or creating patch surfaces

3.6.1 Cross-sectional or linear axis design example
3.6.2 Control polyhedron design — basic technique
3.6.3 Creating patch objects by surface fitting

From patches to objects

Representation and rendering

4.1

Introduction

Rendering polygon meshes — a brief overview

38
38
39
44

46

51
53
55
56

56

58
59

64

66
66

69
75
77

78
78
80
84
90

90
91
93

94
98
100

101

106
107
110
115

121

123
123

124

contents (ix)

4.2 Rendering parametric surfaces 125
4.2.1 Rendering directly from the patch descriptions 125
4.2.2 Patch to polygon conversion 128
4.2.3 Obiject space subdivision 128
4.2.4 Image space subdivision 135

4.3 Rendering a CSG description 138

4.4 Rendering a voxel description 140

4.5 Rendering implicit functions 141

5 The graphics pipeline (1): geometric operations 142
Introduction 142

5.1 Coordinate spaces in the graphics pipeline 143
5.1.1 Local or modelling coordinate systems 143
5.1.2 World coordinate systems 143
5.1.3 Camera or eye or view coordinate system 143

5.2 Operations carried out in view space 147
5.2.1 Culling or back-face elimination 147
5.2.2 The view volume 147
5.2.3 Three-dimensional screen space 149
5.2.4 View volume and depth 152

5.3 Advanced viewing systems (PHIGS and GKS) 156
5.3.1 Overview of the PHIGS viewing system 157
5.3.2 The view orientation parameters 159
5.3.3 The view mapping parameters 159
5.3.4 The view plane in more detail 162
5.3.5 Implementing a PHIGS-type viewing system 164

6 The graphics pipeline (2): rendering or algorithmic processes 167
Introduction 167

6.1 Clipping polygons against the view volume 168

6.2 Shading pixels 171
6.2.1 Local reflection models 173
6.2.2 Local reflection models — practical points 177
6.2.3 Local reflection models - light source considerations 179

6.3 Interpolative shading techniques 179
6.3.1 Interpolative shading techniques — Gouraud shading 180
6.3.2 Interpolative shading techniques — Phong shading 181
6.3.3 Renderer shading options 182
6.3.4 Comparison of Gouraud and Phong shading . 183

6.4 Rasterization 183
6.4.1 Rasterizing edges 183

6.4.2 Rasterizing polygons 185

(x) conTenTs

6.5
6.6

6.7

Order of rendering

Hidden surface removal

6.6.1 The Z-buffer algorithm

6.6.2 Z-buffer and CSG representation
6.6.3 Z-buffer and compositing

6.6.4 Z-buffer and rendering

6.6.5 Scan line Z-buffer

6.6.6 Spanning hidden surface removal
6.6.7 A spanning scan line algorithm
6.6.8 Z-buffer and complex scenes
6.6.9 Z-buffer summary

6.6.10 BSP trees and hidden surface removal

Multi-pass rendering and accumulation buffers

Simulating light-object interaction: local reflection models

71
7.2
7.3
7.4
7.5
7.6

77
7.8

Introduction

Reflection from a perfect surface

Reflection from an imperfect surface

The bi-directional reflectance distribution function
Diffuse and specular components

Perfect diffuse — empirically spread specular reflection

Physically based specular reflection

7.6.1 Modelling the micro-geometry of the surface
7.6.2 Shadowing and masking effects

7.6.3 Viewing geometry

7.6.4 The Fresnel term

Pre-computing BRDFs
Physically based diffuse component

Mapping techniques

8.1

8.2

83
8.4

Introduction

Two-dimensional texture maps to polygon mesh objects
8.1.1 Inverse mapping by bilinear interpolation
8.1.2 Inverse mapping by using an intermediate surface

Two-dimensional texture domain to bi-cubic parametric patch
objects

Billboards
Bump mapping

8.4.1 A multi-pass technique for bump mapping
8.4.2 A pre-calculation technique for bump mapping

187

189
189
190
191
192
193
193
194
196
198
199

202

205
205

206
207
208
211
212

213
214
214
216
216

219
221

223
223

228
229
230

234
235

236
238
239

10

8.5
8.6

8.7

8.8
8.9

CONTENTS

Light maps

Environment or reflection mapping

8.6.1 Cubic mapping

8.6.2 Sphere mapping

8.6.3 Environment mapping: comparative points
8.6.4 Surface properties and environment mapping

Three-dimensional texture domain techniques
8.7.1 Three-dimensional noise

8.7.2 Simulating turbulence

8.7.3 Three-dimensional texture and animation
8.7.4 Three-dimensional light maps

Anti-aliasing and texture mapping

Interactive techniques in texture mapping

Geometric shadows

9.1
9.2
9.3

Introduction
Properties of shadows used in computer graphics
Simple shadows on a ground plane

Shadow algorithms

9.3.1 Shadow algorithms: projecting polygons/scan line

9.3.2 Shadow algorithms: shadow volumes

9.3.3 Shadow algorithms: derivation of shadow polygons from
light source transformations

9.3.4 Shadow algorithms: shadow Z-buffer

Global illumination

10.1

10.2
103

10.4
10.5
10.6
10.7
10.8

Introduction

Global illumination models

10.1.1 The rendering equation

10.1.2 Radiance, irradiance and the radiance equation
10.1.3 Path notation

The evolution of global illumination algorithms

Established algorithms - ray tracing and radiosity
10.3.1 Whitted ray tracing
10.3.2 Radiosity

Monte Carlo techniques in global illumination
Path tracing

Distributed ray tracing

Two-pass ray tracing

View dependence/independence and multi-pass methods

240

243
245
247
248
249

251
251
252
254
256

256
260

263
263

265
265

267
267
268

271
271

275
275

276
277
278
281

283

284
284
286

288
292
294
297
300

CONTENTS

11

12

10.9 Caching illumination
10.10 Light volumes
10.11 Particle tracing and density estimation

The radiosity method
Introduction

11.1 Radiosity theory

11.2 Form factor determination

11.3 The Gauss-Seidel method

11.4 Seeing a partial solution — progressive refinement
11.5 Problems with the radiosity method

11.6 Artefacts in radiosity images
11.6.1 Hemicube artefacts
11.6.2 Reconstruction artefacts
11.6.3 Meshing artefacts

11.7 Meshing strategies
11.7.1 Adaptive or a posteriori meshing
11.7.2 A priori meshing

Ray tracing strategies
Introduction — Whitted ray tracing

12.1 The basic algorithm
12.1.1 Tracing rays — initial considerations
12.1.2 Lighting model components
12.1.3 Shadows
12.1.4 Hidden surface removal

12.2 Using recursion to implement ray tracing

12.3 The adventures of seven rays — a ray tracing study

12.4 Ray tracing polygon objects — interpolation of a normal at an

intersection point in a polygon

12.5 Efficiency measures in ray tracing
12.5.1 Adaptive depth control
12.5.2 First hit speed up
12.5.3 Bounding objects with simple shapes
12.5.4 Secondary data structures
12.5.5 Ray space subdivision

12.6 The use of ray coherence

12.7 A historical digression — the optics of the rainbow

301
303
304

306
306

308
310
314
315
318

319
319
321
323

325
325
332

342
342

343
343
344
345
346

347
350

352

354
354
355
355
357
363

364
367

13

14

15

CONTENTS

Volume rendering
Introduction

13.1 Volume rendering and the visualization of volume data

13.2 ‘Semi-transparent gel’ option
13.2.1 Voxel classification
13.2.2 Transforming into the viewing direction
13.2.3 Compositing pixels along a ray

13.3 Semi-transparent gel plus surfaces
13.3.1 Explicit extraction of isosurfaces

13.4 Structural considerations in volume rendering algorithms
13.4.1 Ray casting (untransformed data)
13.4.2 Ray casting (transformed data)
13.4.3 Voxel projection method

13.5 Perspective projection in volume rendering

13.6 Three-dimensional texture and volume rendering

Anti-aliasing theory and practice
Introduction

14.1 Aliases and sampling

14.2 Jagged edges

14.3 Sampling in computer graphics compared with sampling reality
14.4 Sampling and reconstruction

14.5 A simple comparison

14.6 Pre-filtering methods

14.7 Supersampling or post-filtering

14.8 Non-uniform sampling - some theoretical concepts

14.9 The Fourier transform of images

Colour and computer graphics
Introduction

15.1 Colour sets in computer imagery

15.2 Colour and three-dimensional space
15.2.1 RGB space
15.2.2 The HSV single hexcone model
15.2.3 YIQ space

15.3 Colour, information and perceptual spaces
15.3.1 CIE XYZ space
15.3.2 CIE xyY space

15.4 Rendering and colour spaces

370
370

373

377
378
379
379

380
382

384
385
387
388

390
391

392
392

393
397
398
400
401
402
404
406
411

418
418

419

420
423
424
427

427
429
433

435

