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Preface to the first edition

This book is addressed principally to advanced undergraduates and to
graduates at the beginning of their research careers, and aims to bring
to their notice some of the reactions used in modern organic syntheses.
Clearly, the whole field of synthesis could not be covered in a book of
this size, even in a cursory manner, and a selection has had to be made.
This has been governed largely by consideration of the usefulness of the
reactions, their versatility and, in some cases, their selectivity.

A large part of the book is concerned with reactions which lead to the
formation of carbon-carbon single and double bonds. Some of the
reactions discussed, such as the alkylation of ketones and the Diels- Alder
reaction, are well established reactions whose scope and usefulness has
increased with advancing knowledge. Others, such as those involving
phosphorus ylids, organoboranes and new organometallic reagents
derived from copper, nickel, and aluminium, have only recently been
introduced and add powerfully to the resources available to the synthetic
chemist. Other reactions discussed provide methods for the functionalisa-
tion of unactivated methyl and methylene groups through intramolec-
ular attack by free radicals at unactivated carbon-hydrogen bonds.
The final chapters of the book are concerned with the modification of
functional groups by oxidation and reduction, and emphasise the scope
and limitations of modern methods, particularly with regard to their
selectivity.

Discussion of the various topics is not exhaustive. My object has been
to bring out the salient features of each reaction rather than to provide
a comprehensive account. In general, reaction mechanisms are not dis-
cussed except in so far as is necessary for an understanding of the course
or stereochemistry of a reaction. In line with the general policy in the
series references have been kept to a minimum. Relevant reviews are
noted but, for the most part, references to the original literature are given
only for points of outstanding interest and for very recent work. Particular
reference is made here to the excellent book by H. O. House, Modern
Synthetic Reactions which has been my guide at several points and on
which 1 have tried to build, I feel all too inadequately.
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I am indebted to my friend and colleague, Dr K. Schofield, for much

helpful comment and careful advice which has greatly assisted me in
writing the book.

W. CARRUTHERS
26 October 1970



Preface to the third edition

The general plan of this third edition follows that of the earlier editions,
but the opportunity has been taken to bring the book up to date as far
as possible and to take account of advances in knowledge and of new
synthetic methods which have come into use since publication of the
second edition. Perhaps the most striking trend in synthesis since then
has been the development of highly stereoselective reactions and their
application in complex syntheses. These reactions include the stereoselec-
tive alkylation of carbonyl compounds, stereoselective aldol condensa-
tions and stereoselective oxidations, epoxidations and reductions, and
these are among the topics discussed in this edition. New methods for
the stereoselective formation of carbon-carbon double bonds, and
modern applications of the Diels-Alder reaction, particularly its use in
the control of stereochemistry in the synthesis of natural products, and
the related class of 1,3-dipolar cyclo-addition reactions are also con-
sidered. Other sections of the book are concerned with the increasingly
important application in synthesis of organo-metallic reagents, including
organoboranes and organosilanes and reagents derived from copper,
nickel and palladium, and with the continuing interest in selective reac-
tions at unactivated carbon-hydrogen bonds.

The book is addressed principally to advanced undergraduates and to
graduates at the beginning of their research careers, and my aim has
been to bring out the salient features of the reactions and reagents rather
than to provide a comprehensive account. Reaction mechanisms are not
discussed except in so far as is necessary for an understanding of the
course or stereochemistry of a reaction. To prevent the book from
becoming too big some material of less immediate interest which
appeared in earlier editions has been excised from this one. Dlscusswn
of new reactions is supported by references.

W. CARRUTHERS
May 1985
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1 Formation of carbon-carbon single bonds

In spite of the fundamental importance in organic synthesis of
the formation of carbon-carbon single bonds there are comparatively few
general methods available for effecting this process, and fewer still which
proceed in good yield under mild conditions. Many of the most useful
procedures involve carbanions, themselves derived from organometallic
compounds, or from compounds containing ‘activated’ methyl or methyl-
ene groups. They include reactions which proceed by attack of the
carbanion on a carbony! or conjugated carbonyl group, as in the Grignard
reaction, the aldol and Claisen ester condensations and the Michael
reaction, and reactions which involve nucleophilic displacement at a
saturated carbon atom, as in the alkylation of ketones and the coupling
reactions of some organometallic compounds. Other reactions employed
in the formation of carbon-carbon bonds involve carbonium ions and
pericyclic processes and recently free-radial reactions have been finding
useful application. Examples of all of these procedures will be discussed
in this chapter.

1.1. Alkylation: impertance of enolate anions

It is well known that certain unsaturated groups attached to a
saturated carbon atom render hydrogen atoms attached to that carbon
relatively acidic, so that the compound can be converted into an anion
on treatment with an appropriate base. Table 1.1, taken from House
(1965), shows the pK, values for some compounds of this type and for
some common solvents and reagents.

The acidity of the C—H bonds in these compounds is due to a
combinaion of the inductive electron-withdrawing effect of the unsatur-
ated groups and resonance stabilisation of the anion formed by removal
of a proton (1.1). Not all groups are equally effective in ‘activating’ a
neighbouring CH, or CHj;; nitro is the most powerful of the common
groups and thereafter the series follows the approximate order NO,>
COR>SO,R>CO,R>CN>C¢H;. Two activating groups reinforce
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Table 1.1. Approximate acidities of active methylene compounds
and other common reagents

Compound pK, Compound rK,
CH,CO,H 5 CsH,COCH, 19
CH,(CN)CO,C4H, 9 CH,COCH, 20
CH,(CO.CH,), 9 CH,;SO,CH; ~23
CH,NO, ) 10 CH,CO,C,H, ~24
CH,COCH,CO,C,H, 1 CH,CO;H ~24
CB:(CO;C;H;); 13 CH;CN ~2$
CH,0H 16 C¢HsNH, ~30
C,H,OH 18 (CeH;),CH ~40
(CH,),COH 19, CH,SOCH, ~40

(Acidic hydrogen atoms are underlined)

H. O. House, Modern synthetic reactions, copright 1972, W. A, Benjamin, Inc.
Menlo Park, California. :

each other, as can be seen by comparing diethyl malonate (pK,=~13)
with ethyl acetate (pK, =~ 24). Acidity is also increased slightly by elec-
tron-withdrawing substituents (e.g. sulphide), and decreased by alkyl
groups, so that diethyl methylmalonate, for example, has a slightly less
acidic C—H group than diethyl malonate itself.

/O /0 /0‘
CH,—SI\ Lase, "CH,—N\ + CH,=N
N
O~ o~ o~
0 0O O~
Il il ] (1.1)
C—OCsz C—OCZHS C—OCZHs
Ve erns” /
H,C — |"CH + CH
AN AN AN
ﬁ-oc:Hg ﬁ—OCZHS ﬁ—OCsz
) 0

By far the most important activating groups in synthesis are the
carbonyl and carboxylic ester groups. Removal of a proton from the
a-carbon atom of a carbonyl compound with base gives the correspond-
ing enolate anion, and it is these anions which are involved in base-
catalysed condensation reactions of carbonyl compounds, such as the
aldol condensation, and in bimolecular nucleophilic displacements
(alkylations) (1.2).
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The enolate anions should be distinguished from the enols themselves,
which are always present in equilibrium with the carbonyl compound.
Most monoketones and esters contain only small amounts of enot (<1

o

R—CH,—CO—R’ =22, R CH—CO—R’ ++ R—CH=C—R'

S~ T

~C£CH" c=0' = —C—CH—C~0" 12
03 0

] o ]
_c!@ -cI:—f)'( ~ —C—CH—C—4X"

per cent) at equilibrium, but with 1,2- and 1,3-dicarbonyl compounds
- much higher amounts of enol (>50 per cent) may be present. In the
presence of acid catalysts monoketones may be converted largely into
the enol form, and enols are concerned in many acid-catalysed condensa-
tions of carbonyl compounds (1.3).

’ OH

) I
R—CH,—CO—R' & R—CH=C-R' (1.3)

The formation of the enolate anion results from an equilibrium reaction
between the carbonyl compound and the base. A competing equilibrium
involves the enolate anion and the solvent. Thus, with diethyl malonate
in solvent SolH in presence of base B~, we have

CH,(CO,C,H,),+ B~ “CH(CO,C,H;),+BH

i 1.4
-CH(CO,C,H;), +SolH = CH3(CO,C;H;),+Sol", 14

and to ensure an adequate concentration of the enoclate anion at equili-
brium clearly both the solvent and the conjugate acid of the base must
be much weaker acids than the active methylene compound. The correct
choice of base and solvent is thus of great importance if the subsequent
alkylation, or other, reaction is to be successful. Reactions must normally
be effected under anhydrous conditions since water is a much stronger
acid than the usual activated methylene compounds and, if present,
would instantly protonate any carbanion produced. Another point of
importance is that the solvent must not be a much stronger acid than
the conjugate acid of the base, otherwise the equilibrium

B™+SolH = BH+Sol” (1.5)

will lie too far to the right and lower the concentration of B™. For example,
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sodamide can be used as base in liquid ammonia or in benzene, but,
obviously, not in ethanol. Base-solvent combinations commonly used to
convert active methylene compounds into the corresponding anions
include sodium methoxide, sodium ethoxide and sodium or potassium
t-butoxide in solution in the corresponding alcohol, or as suspensions
in ether, benzene or dimethoxyethane. Potassium t-butoxide is a par-
ticularly useful reagent, since it is a poor nucleophile and its solutions
in different solvents have widely different basic strengths; it is most active
in solution in dry dimethyl sulphoxide (Pearson and Buehler, 1974),
Metallic sodium or potassium, or sodium hydride, in suspension in
benzene, ether or dimethoxyethane, sodamide in suspension in an inert
solvent or in solution in liquid ammonia, and solutions of sodium or
potassium triphenylmethyl in ether or benzene have also been used with
the less ‘active’ compounds. .

For many purposes, however, these traditional bases have now been
superseded by the lithium salts of certain sterically hindered secondary
amines, particularly lithium diisopropylamide and lithium 2,2,6,6-
tetramethylpiperidide (Olofson and Dougherty, 1973) or the alkali metal
salts of bis(trimethylsilyl)amine, HN(SiMe,), (Colvin, 1978; Smith and
'Richmond, 1983). These strong amide bases are only weakly nucleophilic,
so that they do not themselves attack susceptible functional groups, and
they have the added advantage that they are soluble in non-polar, even
hydrocarbon, solvents. The insolubility of the traditional bases in most
common organic solvents seriously limits their usefulness.

1.2 Alkylation of relatively acidic methylene groups
In order to effect a reasonably rapid reaction it is, of course,
necessary to have a high concentration of the appropriate carbanion.
Because of their relatively high acidity (see Table 1.1) compounds in
which a C—H bond is activated by a nitro group or by two or more
carbonyl, ester or cyano groups can be converted largely into their anions
with a comparatively weak base such as a solution of sodium ethoxide
in ethanol. An alternative procedure is to prepare the enolate in benzene
or ether, using finély divided sodium or potassium metal or sodium
hydride, which react irreversibly with compounds containing active
methylene groups with formation of the metal salt and evolution of
hydrogen. B-Diketones can often be converted into their enolates with
alkali metal hydroxides or carbonates in aqueous alcohol or acetone.
Much faster alkylation of enolate anions can often be achieved in
dimethylformamide, dimethyl sulphoxide, 1,2-dimethoxyethane or
hexamethylphosphoramide than in the usual protic solvents. This appears
to be due to the fact that the former solvents do not solvate the enolate
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anion and thus do not diminish its reactivity as a nucleophile. At the
same time they are able to solvate the cation, separating it from the
cation-enolate ion pair and leaving a relatively free enolate ion which
would be expected to be a more reactive nucleophile than the ion pair
(Parker, 1962). Reactions effected with aqueous alkali as base are often
improved in the presence of a phase-transfer catalyst such as a tetra-
alkylammonium salt (cf. Makosza and Joficzyk, 1976).

Alkylation of enolate anions is readily effected with alkyl halides or
other alkylating agents. Both primary and secondary alkyl, allyl or benzyl
halides may be used successfully, but with tertiary halides poor yields
of alkylated product often result because of competing dehydrohalogena-
tion of the halide. It is often advantageous to proceed by way of the
toluene-p-sulphonate or methanesulphonate rather than a halide. The
sulphonates are excellent alkylating agents, and can usually be obtained
from the alcohol in a pure condition more readily than the corresponding
halides. Epoxides have also been used as alkylating agents, generally
reacting at the less substituted carbon atom. Attack of the enolate anion
on the alkylating agent takes place by an Sy2 pathway and thus results
in inversion of configuration at the carbon atom of the alkylating agent.

H,C \\
CH,(CO,C,H,),,

C,H,0Na
G0N
C,H,00 H

p-CH,CH,S0,07} {
1CHUS0,0 CH(CO,C;Hj),

With secondary and tertiary allylic halides or sulphonates, reaction of
an enolate anion may give mixtures of products formed by competing
attack at the a- and y-positions (1.7).

(|:l
Csz—CH—CH'-:CHz

CH,(CO,C,Hy),

C,H,ONa,C;H,OH
CH(CO,C,H;),

C,H;—CH—CH=CH,+ C,H;CH=CHCH,CH(CO,C,H;), (1.7)
(10% of product)

A difficulty sometimes encountered in the alkylation of active methyl-
ene compounds is the formation of unwanted dialkylated products.
During the alkylation of diethyl sodiomalonate, the monoalkyl derivative
formed initially is in equilibrium with its anion as indicated in the first
equation of (1.8). In ethanol solution, dialkylation does not take place
to any appreciable extent because ethanol is sufficiently acidic to reduce



