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This book is based on expository lectures by six internationally known experts
presented at the 2002 MSRI introductory workshop on commutative algebra.
They focus on the interaction of commutative algebra with other areas of
mathematics, including algebraic geometry, group cohomology and represen-
tation theory, and combinatorics, with all necessary background provided.
Short complementary papers describing work at the research frontier are also
included. The unusual scope and format make the book invaluable reading for
graduate students and researchers interested in commutative algebra and its
various uses.
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Preface

Over the last fifteen years, commutative algebra has experienced a striking
evolution. During this period the outlook of the subject has been altered, new
connections to other areas have been established, and powerful techniques have
been developed. To foster further development a year-long program on com-
mutative algebra was held at MSRI during the 2002-03 academic year, starting
with an introductory workshop on September 9-13, 2002. This workshop concen-
trated on the interplay and growing connections between commutative algebra
and other areas, such as algebraic geometry, the cohomology of groups, and
combinatorics.

Six main speakers each gave a series of three talks during the week: David
Benson, David Eisenbud, Mark Haiman, Melvin Hochster, Rob Lazarsfeld, and
Bernard Teissier. The workshop was very well attended, with more than 120
participants. Every series of main talks was supplemented by a discussion/talk
session presented by a young researcher: Manuel Blickle, Ana Bravo, Srikanth
Iyengar, Graham Leuschke, Ezra Miller, and Jessica Sidman. Each of these
speakers has contributed a paper, or in some cases a combined paper, in this
volume.

David Benson spoke on the cohomology of groups, presenting some of the
many questions which are unanswered and which have a close relationship to
modern commutative algebra. He gave us many convincing reasons for working
in the “graded” commutative case, where signs are introduced when commut-
ing elements of odd degree. Srikanth Iyengar gives background information for
Benson’s notes.

David Eisenbud spoke on a classical subject in commutative algebra: free
resolutions. In his paper with a chapter by Jessica Sidman, he visits this classic
territory with a different perspective, by drawing close ties between graded free
resolutions and the geometry of projective varieties. He leads us through recent
developments, including Mark Green’s proof of the linear Syzygy conjecture.

Mark Haiman lectured on the commutative algebra of n points in the plane.
This leads quite rapidly to the geometry of the Hilbert scheme, and to substantial
combinatorial questions (and answers) which can be phrased in terms of common
questions in commutative algebra such as asking about the Cohen-Macaulay

ix
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property for certain Rees algebras. Ezra Miller writes an appendix about the
Hilbert scheme of n points in the plane.

Mel Hochster gave three lectures on tight closure, telling eleven reasons to
study tight closure. Hochster presents tight closure as a test for ideal membership
which is necessary, but not sufficient, except for certain rings such as regular
rings. Graham Leuschke’s appendix gives examples of computation of tight
closure.

The theory of multiplier ideals has been expanding rapidly in the last few
years and bears a close relationship to commutative algebra, particularly tight
closure. Rob Lazarsfeld and Manuel Blickle present a gentle introduction to this
theory, with emphasis on the important theorems and concepts, applications,
and examples.

Resolution of singularities has long played a crucial role in algebraic geometry
and commutative algebra. Bernard Teissier talked about new ideas for under-
standing resolution coming from the simplest of all polynomials: monomials and
binomials. Toric geometry of course enters into this story in a crucial way. Ana
Bravo provides a summary of results on SAGBI bases which enter into this story.

The editors of this volume, who formed the organizing committee for the year
program, would like to thank the many people who made the year possible,
and thank the speakers for their wonderful contributions. A special thanks to
David Eisenbud, the director of MSRI, without whom none of this would have
been possible. We thank Michael Singer, the acting director of MSRI during the
academic year when the program took place, for his generous help, and for the
loan of Eisenbud to participate in our program. The great staff at MSRI were
unfailingly helpful, friendly and professional. We thank the MSRI editor, Silvio
Levy, for all his work on this volume. Finally, we thank the National Science
Foundation for its support of institutes of mathematics in general, and of MSRI
in particular.

We hope the papers in this volume will be a springboard for further learning
and research for both experts and beginners.

Luchezar Avramov
Mark Green

Craig Huneke
Karen Smith
Bernd Sturmfels

Note: The lectures this volume is based on were videotaped. They are available
on streaming video and for downloading at www.msri.org/publications/video or
www.cambridge.org/0521831954.



Trends in Commutative Algebra
MSRI Publications
Volume 51, 2004

Contents

Preface

Commutative Algebra in the Cohomology of Groups
DAVE BENSON

Modules and Cohomology over Group Algebras
SRIKANTH IYENGAR

An Informal Introduction to Multiplier Ideals
MANUEL BLICKLE AND ROBERT LAZARSFELD

Lectures on the Geometry of Syzygies

DaAviD EISENBUD, with a chapter by JESSICA SIDMAN

Commutative Algebra of n Points in the Plane

MARK HAIMAN, with an appendix by EZRA MILLER

Tight Closure Theory and Characteristic p Methods

MELVIN HOCHSTER, with an appendix by GRAHAM J. LEUSCHKE

Monomial Ideals, Binomial Ideals, Polynomial Ideals
BERNARD TEISSIER

Some Facts About Canonical Subalgebra Bases
ANA BRAVO

vii

ix

51

87

115

153

181

211

247



Trends in Commutative Algebra
MSRI Publications
Volume 51, 2004

© 00 O Ut WN =

—
=]

Commutative Algebra
in the Cohomology of Groups

DAVE BENSON

ABSTRACT. Commutative algebra is used extensively in the cohomology
of groups. In this series of lectures, I concentrate on finite groups, but I
also discuss the cohomology of finite group schemes, compact Lie groups,
p-compact groups, infinite discrete groups and profinite groups. I describe
the role of various concepts from commutative algebra, including finite gen-
eration, Krull dimension, depth, associated primes, the Cohen-Macaulay
and Gorenstein conditions, local cohomology, Grothendieck’s local duality,
and Castelnuovo-Mumford regularity.
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2 DAVE BENSON
1. Introduction

The purpose of these lectures is to explain how commutative algebra is used in
the cohomology of groups. My interpretation of the word “group” is catholic: the
kinds of groups in which I shall be interested include finite groups, finite group
schemes, compact Lie groups, p-compact groups, infinite discrete groups, and
profinite groups, although later in the lectures I shall concentrate more on the
case of finite groups, where representation theoretic methods are most effective.
In each case, there are finite generation theorems which state that under suitable
conditions, the cohomology ring is a graded commutative Noetherian ring; over
a field k, this means that it is a finitely generated graded commutative k-algebra.

Although graded commutative is not quite the same as commutative, the usual
concepts from commutative algebra apply. These include the maximal/prime
ideal spectrum, Krull dimension, depth, associated primes, the Cohen-Macaulay
and Gorenstein conditions, local cohomology, Grothendieck’s local duality, and
so on. One of the themes of these lectures is that the rings appearing in group co-
homology theory are quite special. Most finitely generated graded commutative
k-algebras are not candidates for the cohomology ring of a finite (or compact Lie,
or virtual duality, or p-adic Lie, or ...) group. The most powerful restrictions
come from local cohomology spectral sequences such as the Greenlees spectral
sequence H3' H*(G, k) = H_,_+(G,k), which can be viewed as a sort of dual-
ity theorem. We describe how to construct such spectral sequences and obtain
information from them.

The companion article to this one, [Iyengar 2004], explains some of the back-
ground material that may not be familiar to commutative algebraists. A number
of references are made to that article, and for distinctiveness, I write [Sri].

2. Some Examples

For motivation, let us begin with some examples. We defer until the next
section the definition of group cohomology

H*(G, k) = Ext}(k, k)

(or see § 6 of [Sri]). All the examples in this section are for finite groups G over
a field of coefficients k.

(2.1) The first comment is that in the case where k is a field of characteristic
zero or characteristic not dividing the order of G, Maschke’s theorem in represen-
tation theory shows that all kG-modules are projective (see Theorem 3.1 of [S ri]).
So for any kG-modules M and N, and all i > 0, we have Extt,(M, N) = 0. In
particular, H*(G, k) is just k, situated in degree zero. Given this fact, it makes
sense to look at examples where k has characteristic p dividing |G).
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(2.2) Next, we discuss finite abelian groups. See also § 7.4 of [Sri]. The Kiinneth
theorem implies that

(2.2.1) H*(Gy x Ga, k) = H*(G1, k) ® H*(Ga, k).

So we decompose our finite abelian group as a direct product of cyclic groups of
prime power order. The factors of order coprime to the characteristic may be
thrown away, using (2.1). For a cyclic p-group in characteristic p, there are two
possibilities (Proposition 7.3 of [Sri]). If p = 2 and |G| = 2, then H*(G, k) = k|[x]
where z has degree one. In all other cases (i.e., p odd, or p = 2 and |G| > 4), we
have H*(G, k) = k[z,y]/(z?) where x has degree one and y has degree two. It
follows that if G is any finite abelian group then H*(G, k) is a tensor product of
a polynomial ring and a (possibly trivial) exterior algebra.

(2.2.2) In particular, if G is a finite elementary abelian p-group of rank r (ie.,
a product of r copies of Z/p) and k is a field of characteristic p, then the coho-
mology ring is as follows. For p = 2, we have

H*((Z/2)", k) = k[z1,...,x/]
with |z;| = 1, while for p odd, we have
H*((Z/p)T’k)) = A(.’L‘l, $ B ,.’IZT) X k[yl, Ce ,yr]

with |z;] = 1 and [y;| = 2. In the latter case, the nil radical is generated by
Z1,...,%r, and in both cases the quotient by the nil radical is a polynomial ring
in r generators.

(2.3) The next comment is that if S is a Sylow p-subgroup of G then a transfer
argument shows that the restriction map from H*(G, k) to H*(S, k) is injective.
What’s more, the stable element method of Cartan and Eilenberg [1956] identifies
the image of this restriction map. For example, if S < G then H (G, k) =
H*(S,k)G/S | the invariants of G/S acting on the cohomology of S (see §7.6 of
[Sri]). It follows that really important case is where G is a p-group and k has
characteristic p. Abelian p-groups are discussed in (2.2), so let’s look at some
nonabelian p-groups.

(2.4) Consider the quaternion group of order eight,
(2.4.1) Qs =(9,h| gh=h""g=hg™1).
There is an embedding
gHiv hH]? thk’ 92:h2:(gh)2H_1

of Qs into the unit quaternions (i.e., SU(2)), which form a three dimensional
sphere S3. So left multiplication gives a free action of Qg on S3; in other words,
each nonidentity element of the group has no fixed points on the sphere. The
quotient S3/Qsg is an orientable three dimensional manifold, whose cohomology
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therefore satisfies Poincaré duality. The freeness of the action implies that we
can choose a CW decomposition of S? into cells permuted freely by @s. Taking
cellular chains with coefficients in Fy, we obtain a complex of free FoQg-modules
of length four, whose homology consists of one copy of F2 at the beginning and
another copy at the end. Making suitable choices for the cells, this looks as
follows.

(721) 2 (g1 &)

—1 h-1
0 — FoQs — (F2Qs) (F2Qs)? A= e, FaQg — 0

So we can form a Yoneda splice of an infinite number of copies of this sequence
to obtain a free resolution of Fs as an FaQg-module. The upshot of this is that
we obtain a decomposition for the cohomology ring
(24.2) H*(Qs,F2) = F2[z] @, H*(5°/Qs; Fy)

= Faz,y,2]/(2® + zy + *, 2%y + z9?),

where z is a polynomial generator of degree four and x and y have degree one.
This structure is reflected in the Poincaré series

o0
> t'dim H'(Qs, Fa) = (1 + 2t + 262 + ¢%) /(1 — t*).
=0

The decomposition (2.4.2) into a polynomial piece and a finite Poincaré duality
piece can be expressed as follows (cf. §11):

IH*(QB,IFg) 1S A GORENSTEIN RINGj

(2.5) We recall that the meanings of Cohen-Macaulay and Gorenstein in this
context are as follows. Let R be a finitely generated graded commutative k-
algebra with Ry = k and R; = 0 for ¢ < 0. Then Noether’s normalization lemma
guarantees the existence of a homogeneous polynomial subring k[z1, . .., z,] over
which R is finitely generated as a module.

PROPOSITION 2.5.1. If R is of the type described in the previous paragraph, then
the following are equivalent.

(a) There ezists a homogeneous polynomial subring k[z1,...,z,] C R such
that R is finitely generated and free as a module over k[z1,...,z,).

(b) If k[z1,...,z;] € R is a homogeneous polynomial subring such that R is
finitely generated as a k[z1,...,x,]-module then R a free k[z1,...,z,]-module.

(c) There exist homogeneous elements of positive degree z, ..., z, forming a
regular sequence, and R/(x1,...,x,) has finite rank as a k-vector space.

We say that R is Cohen—Macaulay of dimension r if the equivalent conditions of
the above proposition hold.
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(2.6) If Ris Cohen-Macaulay, and the quotient ring R/(z1,...,z,) has a sim-
ple socle, then we say that R is Gorenstein. Whether this condition holds is
independent of the choice of the polynomial subring. Another way to phrase the
condition is that R/(z1,...,x,) is injective as a module over itself. This quotient
satisfies Poincaré duality, in the sense that if the socle lies in degree d (d is called
the dualizing degree) and we write

p(t) =)t dimg(R/(z1,...,2,))i

=0
then
(2.6.1) tip(1/t) = p(t).
Setting
x .
P(t) =t dim R;,
=0
the freeness of R over k[z1, . .., z,] implies that P(t) is the power series expansion

of the rational function p(t)/ [T;_, (1 — ¢/*:!). So plugging in equation (2.6.1), we
obtain the functional equation

(2.6.2) P(1/t) = (—t)"t~P(t),

where a =d — Y7_,(|zi| — 1). We say that R is Gorenstein with a-invariant a.

Another way of expressing the Gorenstein condition is as follows. If R (as
above) is Cohen—Macaulay, then the local cohomology HS'R is only nonzero for
s = r. The graded dual of H3*R is called the canonical module, and written
Q2r. To say that R is Gorenstein with a-invariant a is the same as saying that
Qr is a copy of R shifted so that the identity element lies in degree r — a.

In the case of H*(Qs,F3), we can choose the polynomial subring to be k[z].
The ring H*(Qs,F2) is a free module over k[2] on six generators, corresponding
to a basis for the graded vector space H*(S%/Qg;Fs) & H* (@s,F2)/(2), which
satisfies Poincaré duality with d = 3. So in this case the a-invariant is 3—(4-1) =
0. We have p(t) = 1+ 2t 4 2t2 + ¢3 and P(t) = p(t)/(1 — t*).

(2.7) A similar pattern to the one seen above for Qs holds for other groups.
Take for example the group GL(3, 2) of 3 x 3 invertible matrices over Fo. This
is a finite simple group of order 168. Its cohomology is given by

H*(GL(?’? 2)a]F2) = Fz[.’l), Y, z]/(xS + yz)

where degz = 2, degy = degz = 3. A homogeneous system of parameters
for this ring is given by y and z, and these elements form a regular sequence.
Modulo the ideal generated by y and 2, we get Fo(z)/(z®). This is a finite
Poincaré duality ring whose dualizing degree is 4. Again, this means that the
cohomology is a Gorenstein ring with a-invariant 4 — (3—1)—(3—1) =0, but it
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does not decompose as a tensor product the way it did for the quaternion group
(2.4.2).

(2.8) It is not true that the cohomology ring of a finite group is always Goren-
stein. For example, the semidihedral group of order 2™ (n > 4),

(28.1) G=SDy =(g,h|g* =1, h2=1, h™lgh=g>" "~
has cohomology ring
H*(SDyn ,Fy) =Fa[z,y, z,w]/(zy, y°, yz, 2% + 2?w)

with degz = degy = 1, deg 2 = 3 and degw = 4. This ring is not even Cohen—
Macaulay. But what is true is that whenever the ring is Cohen-Macaulay, it is
Gorenstein with a-invariant zero. See §11 for further details.

Even if the cohomology ring is not Cohen—-Macaulay, there is still a certain
kind of duality, but it is expressed in terms of a spectral sequence of Greenlees,
HEEH~(G, k) = H_,_+(G,k). Let us see in the case above of the semidihedral
group, what this spectral sequence looks like. And let’s do it in pictures. We’ll

draw the cohomology ring as follows.
wrz
5
2?2 = wa? wy?
wx wy
xrz w
o H*(SDan,F2)

22 y2
x y

1

The vertical coordinate indicates cohomological degree, and the horizontal co-
ordinate is just for separating elements of the same degree. To visualize the
homology, just turn this picture upside down by rotating the page, as follows.

H.(SDan ,Fy)

(2.8.2)
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We compute local cohomology using the stable Koszul complex for the homo-
geneous system of parameters w, x,

0 — H*(G,F2) —» H*(G,Fo)[w™'| @ H*(G,F3)[z™}] —» H*(G,Fo)[w ™tz — 0

where the subscripts denote localization by inverting the named element. A
picture of this stable Koszul complex is as follows.

wz
0O ——
w
z
wz
1
w
z
1
wlz
B ——
w1 @
1 32 4w
N 0
zw~lz 1 x 32 4w

The local cohomology of H*(G, k) is just the cohomology of this complex. In
degree zero there is no cohomology. In degree one there is some cohomology,
namely the hooks that got introduced when w was inverted,
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Hé\H*(SD2n,IF2) = /w_2y2
w2y
In degree two, we get the part of the plane not hit by either of the two degree
one pieces, wlzg~—1z

—-1,—1
w2z~ 1z i

H2H*(SDyn,Fp) = ... ;

Now the differential dy in this spectral sequence increases local cohomological
degree by two and decreases internal degree by one, and the higher differentials
are only longer. So there is no room in this example for nonzero differentials. It
follows that the spectral sequence takes the form of a short exact sequence

0 — HY'"1H*(SDon,F3) — H_4(SDgn,F2) — H3*"2H*(SDyn,Fy) — 0.

This works fine, because H,(SDa-,F3) is the graded dual of H*(SDzn,F5), as
shown in (2.8.2). So the short exact sequence places the hooks of H} underneath
every second nonzero column in H2 to build H,(SDs~,F;). Notice that the
hooks appear inverted, so that there is a separate Poincaré duality for a hook.

The same happens as in this case whenever the depth and the Krull dimension
differ by one. The kernel of multiplication by the last parameter, modulo the
previous parameters, satisfies Poincaré duality with dualizing degree determined
by the degrees of the parameters; in particular, the top degree of this kernel
is determined. In the language of commutative algebra, this can be viewed in
terms of the Castelnuovo-Mumford regularity of the cohomology ring. See § 14
for more details.

The reader who wishes to understand these examples better can skip directly
to § 14, and refer back to previous sections as necessary to catch up on definitions.
Conjecture 14.6.1 says that for a finite group G, Reg H*(G, k) is always zero. This
conjecture is true when the depth and the Krull dimension differ by at most one,
as in the above example. It is even true when the difference is two, by a more
subtle transfer argument sketched in § 14 and described in detail in [Benson 2004].

3. Group Cohomology

For general background material on cohomology of groups, the textbooks I
recommend are [Adem and Milgram 1994; Benson 1991b; Brown 1982; Cartan
and Eilenberg 1956; Evens 1991]. The commutative algebra texts most relevant



