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Preface

This book is intended to serve as an introduction, primarily for
mathematicians, to the theory of partial differential equations
and, it is hoped, should be suitable for final-year undergraduate,
and first-year postgraduate, students who are following a reason-
ably comprehensive first course on partial differential equations.
Most of the material covered in the first nine chapters has been
included, at various times, in final-year courses that I have given
during the past twenty years but I would be hesitant about
attempting to include all this material in a single course.

The approach is classical in the sense that the methods and
notation of functional analysis are not used though relatively new
concepts such as ‘weak solutions’, ‘shocks’, and Green’s functions
which are useful to applied mathematicians are discussed. There
is also no use, in any systematic fashion, of the formal theories of
generalized functions or of distributions except that the elemen-
tary concept of the delta-function is freely used to develop the
theory of Green’s functions. My intention has been to try and
emphasize the relationship between a given (generally linear)
partial differential equation and the type of problems for which
solutions exist and to describe the properties of solutions of the
canonical second-order linear equations. I have attempted not to
over-emphasize the development of special methods of solution
and this aspect of the subject is largely confined to Chapter 7
where most of the general techniques for solving linear equations
are described.

A number of exercises are included in the text and these vary
from routine applications of the basic theory to problems taken
from recent examination papers set at various Universities. I
should like to thank the Universities of Cambridge, East Anglia,
Liverpool, and Manchester for permission to include questions
from their examination papers. Questions from Oxford Univer-
sity examination papers have been included by permission of
Oxford University Press and I am grateful to the latter body for
giving me permission to include these questions. I am also greatly



viii Preface

indebted to my friend and colleague, Dr. R. Shail, for his help in
reading, and commenting, on the complete manuscript and in
reading through the proofs.

Surrey W.E.W.
November 1979
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1 Introduction

THE basic definitions are given in §1.1 and the various types of
problems that can occur for partial differential equations are
illustrated by specific examples in §1.2. In §1.3 it is shown that
the problem of determining a function which makes some integral
involving it have a maximum or a minimum value is equivalent to
finding a particular solution of a partial differential equation. This
type of reduction is of particular relevance to mathematical
physics as the behaviour of many physical systems can be formu-
lated succinctly in terms of some maximum or minimum principle
involving integrals and the methods described in §1.3 enable the
governing partial differential equation to be obtained fairly easily
from such maximum or minimum principles. It is important from
the practical point of view that the solution of a partial differen-
tial equation varies continuously with any boundary data imposed
and a problem in which this is the case is said to be ‘well-posed’.
This question of ‘well-posedness’ is considered briefly in §1.4
where a simple counter-example is used to illustrate the fact that
a seemingly reasonable problem need not be well-posed. In §1.5
the basic results relating to the various Fourier series expansions
of a given function are summarized, together with the corres-
ponding results for expansion as a Fourier—Bessel series and as a
series of Legendre polynomials. Particular cases of these results
are required at various points in the subsequent chapters and it is
convenient to collect them all together at this stage.

1.1. Basic definitions

A partial differential equation in two independent variables is a
relationship of the form

F(X, y, Uy, Uy, Ueys Uyys Usys U Urys - - ) =0,

where u, =0u/ox etc; the order of a partial differential equation is
the order of the highest derivative (or derivatives) occurring. This
suffix notation will also be used, whenever appropriate and when
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no ambiguity can arise, to denote the total derivative with respect
to x of a function of the single variable x.

A linear equation is one which is linear in the dependent
variable u and all of its partial derivatives occurring in the
equation. A linear equation is therefore of the form

Lu=g(x,y), (1.1)

where Lu is a sum of terms each of which is a product of a
function of x and y with u or one of its partial derivatives. For
first- and second-order equations the respective general forms for
Lu are

Lu=a(x, y)u,+b(x, y)u, +c(x, y)u,

Lu=a(x, y)u, +2b(x, y)u,, +c(x, y)u,,
+d(x, y)u, +e(x, y)u, +f(x, y)u.

A linear equation is said to be homogeneous when, in equation
(1.1), g=0 (and therefore an inhomogeneous equation corres-
ponds to g#0). The definition of L shows that the difference
between two solutions of equation (1.1) is a solution of the
corresponding homogeneous equation. Thus solutions of the in-
homogeneous equation can be obtained by adding a solution of
the homogeneous equation to any particular solution of the
inhomogeneous equation. This is analogous to writing the solu-
tion of an ordinary linear differential equation as the sum of a
particular integral and a complementary function. It also follows
from the definition of L that

L(Au,+ Bu,)= ALu,+ BLu,,

where A and B are constants, showing that a sum of constant
multiples of solutions of the homogeneous linear equation is also
a solution of the equation. This is the principle of superposition
and it forms the basis of most practical methods of solving linear
equations.

A quasi-linear equation is an equation which is linear in the
highest derivative (or derivatives) occurring; an example of a
first-order quasi-linear equation is

A+ u?u, +u, = x>

An almost linear or half-linear partial differential equation is a
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quasi-linear equation in which the coefficients of the highest
order derivatives are functions only of the independent variables;
an example of such an equation is

XUy, +4xyu,, +uu, +u=0.

1.2. Typical problems

Practical problems in many fields of application can be reduced
to the solution of a partial differential equation or equations.
Such a reduction normally requires considerable background
knowledge and it is inappropriate to present here the detailed
reduction for particular cases. It seems worthwhile, however, to
list some typical problems which can occur in practice. The
simplest such problems for second-order linear equations occur in
the classical areas of physics such as heat conduction, acoustics,
fluid motion, and electromagnetic theory. Historically, a detailed
physical understanding of the underlying phenomena has proved
invaluable in establishing the mathematical theory of various
types of second-order linear partial differential equations. Such
an understanding however will not be presumed and most of the
results and methods will not refer to particular applications,
whether physical or otherwise, as detailed knowledge of such
applications is likely to be non-uniform. It should however be
borne in mind that, particularly in studying a new partial differen-
tial equation, an understanding of the underlying phenomena can
be extremely useful in clarifying the mathematical structure of a
partial differential equation.

(i) Simple birth process

The probability-generating function G(x, y) for a simple birth
(Yule—Furry) process satisfies

G, +ax(1-x)G, =0,
with G(x, 0)=x’, where a is a constant and j a positive integer.
This is a first-order linear homogeneous equation and the depen-
dent variable is prescribed on a curve (the x-axis) in (x, y)-space.

(ii) Incoming calls at a telephone exchange

With certain assumptions regarding the duration of calls the
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problem of determining the probable number of incoming calls at
a telephone exchange reduces to solving

G, +a(x—1)G, =b(x—1)G,

with G(x, 0) = x’, where a and b are constants and j is a positive
integer. This is another example of a first-order equation with the
dependent variable prescribed on a curve.

(iii) Temperature in a metallic lamina

The temperature u(x, y) in a metallic lamina, whose boundary
is a closed curve C kept at a constant temperature u,, satisfies

U, +u,, =0, 1.2)

and u =u, on C, where x and y are Cartesian coordinates in the
plane of the lamina. Equation (1.2) is Laplace’s equation in two
dimensions. The problem of finding the solution of a partial
differential equation taking prescribed values on a closed curve
(or surface in three dimensions) is termed a Dirichlet problem.

When C is not kept at a steady temperature but a steady
known flow of heat is maintained round C then it can be shown
from the theory of heat conduction that the derivative of u
normal to C is known. A problem of this kind, where the normal
derivative of the dependent variable is prescribed on a closed
curve (or surface), is referred to as a Neumann problem.

If a steady source of heat such as a flame is applied within C
then equation (1.2) has to be replaced by

Uy, T Uy = g, (1.3)

where g is a known function (related to the applied heat source)
and this equation is the two-dimensional Poisson’s equation.

(iv) Transverse vibrations of a string

The displacement u in the small transverse vibrations of an
infinitely long taut string, which extends along the x-axis when in
equilibrium, satisfies the equation

c*u,—u,=0, (1.4)
where ¢ is a constant, and the conditions

u(x,0=f(x), w(x0)=gk), (1.5)
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where f and g are given functions. In equation (1.4), which is
known as the one-dimensional wave equation, t is a time variable
and equations (1.5) prescribe the displacement f and the velocity g
at the instant ¢t =0. In (x, t)-space the conditions (1.5) are applied
on the line t=0 and can be interpreted as prescribing u and its
normal derivative on this line. For a second-order equation, a
problem where the dependent variable and its normal derivative
are prescribed on a given curve is termed a Cauchy problem. The
problem posed by equations (1.4) and (1.5) is, by analogy with the
underlying physical problem, also referred to as an initial-value
problem. Prescribing a function along a curve means its derivative
along the curve can be found and therefore, if the normal
derivative is also known, both first derivatives are known on the
curve. Therefore for nth order equations a Cauchy problem is
one where the dependent variable and all its derivatives of all
orders up to and including the (n — 1)th are prescribed on a curve.

For a string of finite length a and held fixed at the end points
x=0 and x=a (as, for example, for a violin string) equations
(1.4) and (1.5) have to be supplemented by

u(,t)=u(a, t)=0,

and the resulting problem is called a mixed initial-value—
boundary-value problem.

Equations (1.2) and (1.4) would appear to be of a similar type
and yet the typical boundary conditions posed in practical prob-
lems are very dissimilar. It will transpire however that the two
equations are very different in nature and that it is not possible in
general to solve a Dirichlet problem for equation (1.4), and
solving Cauchy problems for equation (1.2) poses serious prob-
lems. In these cases the physical context provides an excellent
guide for developing an appropriate mathematical theory.

(v) Heat conduction in a thin rod

The temperature u in a thin straight rod with insulated sides
satisfies

U, = ku,, (1.6)

where k is a constant, x is a Cartesian coordinate along the rod,
and t is a time variable. A typical problem is that of determining
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the temperature at any time, given the temperature distribution
at t =0 and the temperatures at the two ends x =0 and x = a, say.
Thus the conditions are

u(0,t), u(a, t), u(x, 0) given. (1.7)

The conditions (1.7) pose a mixed initial-value—boundary-value
problem for u similar to that for the transverse displacement of a
string fixed at two ends. The main difference in the present case is
that only u is prescribed at t=0; this is essentially because
equation (1.6) only involves the first derivative with respect to t.
It would not be possible to prescribe u and u, independently as
ku,(x, 0) = uy, (x, 0).

It is shown in Chapter 3 that there are three different classes of
second-order linear (and half-linear) equations and that equa-
tions (1.2), (1.4), and (1.6) are, respectively, typical (and in fact
canonical) members of each class.

(vi) Electrostatics

The static electric field E due to a time-independent charge
distribution can be shown to be of the form E =—grad u where

Viu=u, +uy+u, =1, (1.8)

and.f is related to the charge density of the given distribution.
Equation (1.8) is the three-dimensional Poisson’s equation and
reduces, when f=0, to the three-dimensional Laplace’s equation.
In a typical electrostatic problem u will be prescribed on some
given surface and in unbounded regions will tend to zero at
infinity; hence electrostatic problems are generally Dirichlet ones.

(vii) Electromagnetic wave propagation

Each Cartesian component of the electric and magnetic field
vectors in a homogeneous medium satisfies

c*Vu = uy,, (1.9

where ¢ is a constant and t is a time variable. Equation (1.9) is the
three-dimensional wave equation and it is also satisfied by the
velocity potential of small-amplitude sound waves. In physical
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problems u and u, are generally known at t =0 at all points of
space and u or du/dn are known on any bounding surface.

(viii) Plateau’s problem

The problem of finding the surface of minimum area passing
through a given plane curve C (Plateau’s problem) reduces to
solving

(1+uu, + (1 +udu, —2uuu, =0, (1.10)

when u is given on C.

In the following section it will be shown that the problem of
solving Dirichlet and Neumann problems for some partial
differential equations is equivalent to finding a function such that
a given integral involving the function and its derivatives (such an
integral is termed a functional) has a stationary value (often a
minimum). A problem of this type is said to be a problem in
variational calculus or a variational problem and use of varia-
tional calculus provides an alternative approach to the solution of
partial differential equations. Many of the equations of
mathematical physics can also be derived directly from some
minimum principle such as one of minimum energy or Hamilton’s
principle of least action in mechanics.

1.3. Variational formulation of partial differential
equations

The variational approach is probably best illustrated by consid-
ering a particular example before proceeding to the general case.
We therefore attempt to find a function u taking specified values
on the boundary C of a region D and such that the integral (or
functional) I(u), defined by

I(u)=j (u’+u,>+2gu) dx dy, (1.11)
D

where g is a known function of x and y, has a minimum value. It
will be assumed that u and its first and second derivatives are
continuous within D. The problem is more complicated than the
normal minimum problems of differential calculus as there is
clearly an infinity of possible functions that could be substituted
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into the right-hand side of equation (1.11). The correct approach
to the problem can be found by careful consideration of what is
meant by stating that u produces a minimum value of I This
means that substituting into the right-hand side of equation

(1.11) any function other than the correct one produces a greater
value for I In particular then

I(u+ef)=I(u),

where u is the correct function and & a constant, for any function
f vanishing on C (this is necessary in order that u and u + ¢f take
the same values on C). Hence,

I {w’+u+2e(wf, +uf,) + e*(F* +£,°) +2g(u + ef)} dx dy
D
ZI (u,>+u,>+2gu) dx dy
D
or

ZEJ (uxfx+uyfy+gf)dxdy+ezj (f>+1£,5) dx dy=0.
i (1.12)

For small values of & the first term on the left-hand side of
equation (1.12) will dominate and hence, as £ can be positive or
negative, the coefficient of € must vanish so that

j (uf. +u,f, +gf) dx dy =0,

Hence,
I (grad u - grad f+gf) dxdy =0
D

or
J' (div (f grad u) — fV?u +gf) dx dy = 0. (1.13)

Equation (1.13) can be rewritten, on using the divergence
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theorem, as
Ju N
f—ds—| f(V’u—g)dxdy=0, (1.14)
c " on D

where du/dn is the normal derivative of u on C. The condition
f=0 on C gives

I f(V’u—g)dxdy =0, (1.15)

for all f such that f=0 on C.

If it is assumed that there exists a point P in D such that
V?u—g+#0 at P then, by continuity, V2u—g will be non-zero
and one-signed in a neighbourhood of P. It is also possible to
construct a suitable function f which is one-signed and non-zero
within such a neighbourhood and vanishes outside it (e.g.
f=(a®>—x?>b*—y?? within |x|=<a, |y|=b and zero outside
the rectangle satisfies all the conditions). Hence f(V?u — g) will be
one-signed in some neighbourhood of P and zero outside and the
left-hand side of equation (1.15) will be non-zero. This is a
contradiction and hence the original assumption was false and
therefore

Viu=g, (1.16)

with u known on C. Hence the problem of solving equation
(1.16) with u taking prescribed values on C is equivalent to
finding u taking known values on C and such that the functional I
defined in equation (1.11) has a minimum value.

The above analysis can be extended to the case when I is
defined by

1= [ FGy, 1) dx dy, (1.17)
D

where F is a given function. For a minimum (or stationary) value
to be attained it is necessary, by analogy with the arguments ap-
plied to equation (1.11) that the coefficient of ¢ in I(u + ef) — I(u)
must vanish for all f=0 on C. Taylor’s theorem gives this co-
efficient to be

I (fE, +f.F, +f,F,)dxdy
D



