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Preface

The first edition of this book was published in 1959, and since then the book has had
a number of reprintings. All these reprintings have shown that the book is widely used
as an introductory text to the field of the strength of materials and structures, and it is
hoped that this new edition will ensure the book’s continuing usefulness. The first
edition was published under the title of Strength of Materials; the book is used in fact
as a general introduction to both the strength of materials and structures, and in the
second edition this broader title has been chosen. As an elementary text, the book of
course gives an introduction to the application of basic ideas in solid and structural
mechanics to engineering problems.

The content covers most of the requirements of an engineering undergraduate in his
first and second years, and in some cases for the whole of his course. For more advanced
studies, the authors’ Advanced Strength of Materials will cover the requirements for
final honours degree courses and for post-graduate studies.

The book begins with a simple discussion of stresses and strains in materials and
structural components, and the forms these take in tension, compression and shear;
in Chapter 5 some simple general properties of stress and strain are first introduced.
These basic properties are then applied to a wide range of problems, including shells,
beams and shafts; plastic as well as elastic problems are treated. In Chapter 17 a
simple introduction is given to the important principle of virtual work, and two special
forms of this—leading to strain energy and complementary energy—are dealt with in
Chapter 18. The final chapters are devoted, respectively, to buckling, vibrations and
impact stresses.

Both worked examples and unsolved problems are given in the text, and all these are
treated in SI units. Some of the examples, and many of the additional problems, are
based on questions set by various examining bodies; the sources of these questions
are shown in the text.

This new edition was begun by both authors, but because of Mr John Case’s death
in 1969, the new edition was completed by Dr Chilver. During the life of the first edition,
many useful comments and corrections were suggested by readers; corrections and
amendments based on these have been incorporated in this second edition; but readers’
comments will still be most welcome.
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length

breadth

wave velocity, distance
diameter

eccentricity

depth
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length
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area
complementary energy
diameter

Young’s modulus
shearing force
shearing modulus
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torsion constant

bulk modulus

length

bending moment
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force, radius
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strain energy
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Note on SI units

The units used throughout the book are those of the Systéme Internationale d’Unités;
this is usually referred to as the SI system. In the field of the strength of materials and
structures we are concerned with the following basic units of the SI system:

length metre (m)
mass kilogramme (kg)
time second (s)
temperature kelvin (K)

There are two further basic units of the SI system—electric current and luminous
intensity—which we need not consider for our present purposes, since these do not
enter the field of the strength of materials and structures. For temperatures we shall
use conventional degrees centigrade (° C), since we shall be concerned with temperature
changes rather than absolute temperatures. The units which we derive from the basic
SI units, and which are relevant to our field of study, are:

force newton (N) kg.m.s 2

work, energy joule (J) kgm2s 2 = Nm
power watt (W) kgm?s 3 = Js !
frequency hertz (Hz) cycle per second

The acceleration due to gravity is taken as:

2

g = 981 ms~

Linear distances are expressed in metres and multiples or divisions of 10* of metres, i.e.

kilometre (km) 10°m
metre (m) 1 m
millimetre (mm) 1003 m

In many problems of stress analysis these are not convenient units, and others, such
as the centimetre (cm), which is 10”2 m, are more appropriate.

The unit of force, the newton (N), is the force required to give unit acceleration
(ms™?) to unit mass (kg). In terms of newtons the common force units in the foot-
pound-second system (with g = 9-81 ms™2) are

1 Ib.wt = 4-45 newtons (N)
1 ton.wt = 9:96 x 103 newtons (N)

In general, decimal multiples in the SI system are taken in units of 10°. The prefixes
vii



NOTE ON UNITS USED IN BOOK

we make most use of are:

kilo k 103

mega M 108

giga G 10°
Thus:

1 ton.wt = 9-96 kN

The unit of force, the newton (N), is used for external loads and internal forces, such as
shearing forces. Torques and bending moments are expressed in newton-metres (Nm).

An important unit in the strength of materials and structures is stress. In the foot-
pound-second system, stresses are commonly expressed in Ib.wt/in2, and tons/in®. In
the SI system these take the values:

1 Ib.wt/in? = 6:89 x 10° N/m? = 6-89 kN/m?
1 ton.wt/in? = 15-42 x 10° N/m? = 15:42 MN/m?
Yield stresses of the common metallic materials are in the range:
200 MN/m? to 750 MN/m?
Again, Young’s modulus for steel becomes:
E .o = 30 x 10° Ib.wt/in? = 207 GN/m?

Thus, working and yield stresses will be expressed in MN/m? units, while Young’s
modulus will be given in GN/m? units.

viii
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1 Tension and compression: direct stresses

1.1 Introduction

The strength of a material, whatever its nature, is defined largely by the internal
stresses, or intensities of force, in the material. A knowledge of these stresses is essential
to the safe design of a machine, aircraft, or any type of structure. Most practical
structures consist of complex arrangements of many component members; an aircraft
fuselage, for example, is an elaborate system of interconnected sheeting, longitudinal
stringers, and transverse rings. The detailed stress analysis of such a structure is a
difficult task, even when the loading conditions are simple. The problem is complicated
further because the loads experienced by a structure are variable and sometimes un-
predictable. We shall be concerned mainly with stresses in materials under relatively
simple loading conditions; we begin with a discussion of the behaviour of a stretched
wire, and introduce the concepts of direct stress and strain.

1.2  Stretching of a steel wire
One of the simplest loading conditions of a material is that of tension, in which the
fibres of the material are stretched. Consider, for example, a long steel wire held rigidly

atits upper end, Fig. 1.1,and loaded by a mass hung from the lower end. If vertical move-
ments of the lower end are observed during loading it will be found that the wire is

- ;
Stee/

wire —|

Fig. 1.1  Stretching of a steel wire under end load.

stretched by a small, but measurable, amount from its original unloaded length. The
material of the wire is composed of a large number of small crystals which are only
visible under microscopic study ; these crystals have irregularly shaped boundaries, and
largely random orientations with respect to each other; asloads are applied to the wire,

the crystal structure of the metal is distorted.
1



TENSION AND COMPRESSION: DIRECT STRESSES

For small loads it is found that the extension of the wire is roughly proportional to
the applied load, Fig. 1.2. This linear relationship between load and extension was
discovered by Robert Hooke in 1678 ; a material showing this characteristic is said to
obey Hooke’s law.

As the tensile load in the wire is increased, a stage is reached where the material ceases
to show this linear characteristic; the corresponding point on the load-extension curve
of Fig. 1.2 is known as the limit of proportionality. If the wire is made of a high-strength
steel then the load-extension curve up to the breaking point has the form shown in Fig.
1.2. Beyond the limit of proportionality the extension of the wire increases non-linearly
up to the breaking point.

Load
A
Breaking
point

Fig. 1.2 Load-extension curve for a steel wire,
Lirrit of showing the limit of linear-elastic behaviour (or
proportionality limit of proportionality) and the breaking point.

Fxtension

—>

The limit of proportionality is important because it divides the load-extension curve
into two regions. For loads up to the limit of proportionality the wire returns to its
original unstretched length on removal of the loads; this property of a material to
recover its original form on removal of the loads is known as elasticity ; the steel wire
behaves, in fact, as a stiff elastic spring. When loads are applied above the limit of
proportionality, and are then removed, it is found that the wire recovers only part of
its extension and is stretched permanently; in this condition the wire is said to have
undergone an inelastic, or plastic, extension.

In the case of elastic extensions, work performed in stretching the wire is stored as
strain energy in the material; this energy is recovered when the loads are removed.
During inelastic extensions work is performed in making permanent changes in the
internal structure of the material; not all the work performed during an inelastic
extension is recoverable on removal of the loads; this energy reappears in other forms,
mainly as heat.

The load-extension curve of Fig. 1.2 is not typical of all materials; it is reasonably
typical, however, of the behaviour of brittle materials, which are discussed more fully
in §1.5. Animportant feature of most engineering materials is that they behave elastically
up to the limit of proportionality, that is, all extensions are recoverable for loads up to

2



TENSILE AND COMPRESSIVE STRESSES

this limit. The concepts of linearity and elasticity* form the basis of the theory of small
deformations in stressed materials.

1.3 Tensile and compressive stresses

The wire of Fig. 1.1 was pulled by the action of a mass attached to the lower end ; in
this condition the wire is in tension. Consider a cylindrical bar ab, Fig. 1.3, which has

Fig. 1.3  Cylindrical bar under uniform tensile stress; c ("'_“; P
there is a similar state of tensile stress over any imaginar ‘]’ -
: ymagimary i
normal cross-section.

2

a uniform cross-section throughout its length. Suppose that at each end of the bar the
cross-section is divided into small elements of equal area; the cross-sections are taken
normal to the longitudinal axis of the bar. To each of these elemental areas an equal
tensile load is applied normal to the cross-section and parallel to the longitudinal axis
of the bar. The bar is then uniformly stressed in tension.

Suppose the total load on the end cross-sections is P; if an imaginary break is made
perpendicular to the axis of the bar at the section ¢, Fig. 1.3, then equal forces P are
required at the section ¢ to maintain equilibrium of the lengths ac and c¢b. This is
equally true for any section across the bar, and hence on any imaginary section perpen-
dicular to the axis of the bar there is a total force P.

* The definition of elasticity requires only that the extensions are recoverable on removal of the loads:;
this does not preclude the possibility of a non-linear relation between load and extension, although no such
non-linear elastic relationships are known for materials in common use in engineering.
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When tensile tests are carried out on steel wires of the same material, but of different
cross-sectional areas, the breaking loads are found to be proportional approximately
to the respective areas of the wires. This is so because the tensile strength is governed
by the intensity of force on a normal cross-section of a wire, and not by the total force.
This intensity of force is known as stress; in Fig. 1.3 the tensile stress ¢ at any normal
cross-section of the bar is

o= (1.1)
where P is the total force on a cross-section, and A4 is the area of the cross-section.

In Fig. 1.3 uniform stressing of the bar was ensured by applying equal loads to equal
small areas at the ends of the bar. In general we are not dealing with equal force
intensities of this type, and a more precise definition of stress is required. Suppose 64
is an element of area of the cross-section of the bar, Fig. 1.4; if the normal force acting

8P

dA

Fig. 1.4 Normal load on an element of area of the cross-section.

on this element is 6P, then the tensile stress at this point of the cross-section is defined as
the limiting value of the ratio (0P/6A) as 64 becomes infinitesimally small. Thus
6P 4P

¢ = Limit — =

34A-0 0A d_A (12)

This definition of stress is used in studying problems of non-uniform stress distribution
in materials.

When the forces P in Fig. 1.3 are reversed in direction at each end of the bar they tend
to compress the bar; the loads then give rise to compressive stresses. Tensile and com-
pressive stresses are together referred to as direct stresses.

Problem1.1: A steel bar of rectangular cross-section, 3 cm by 2 cm, carries an axial load of 30 kN. Estimate
the average tensile stress over a normal cross-section of the bar.

N 2cm
i N
| ™. ]
po : ) | A
30kN «— | & i | ~}—= 30kN
I L0
4}3 cm )\] _L\
t Area of normol cross-section=6cm®
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Solution
The area of a normal cross-section of the bar is

A =003 x 002 =06 x 1073 m?
The average tensile stress over this cross-section is then

P 30 x 103
=—=—"—- = 50 Ml\l/ﬂl2
A 06 x 1073

Problem 1.2: A steel bolt, 2:50 cm in diameter, carries a tensile load of 40 kN. Estimate the average tensile
stress at the section a and at the screwed section b, where the diameter at the root of the thread is 2-10 cm.

a b
| |
o l
[ 1 : 40kN
/ T F= ==
40 kN —— 2:50cm 2-10 cm diameter
\ d/zimeter o
e

Solution
The cross-sectional area of the bolt at the section a is

Ay = 3(0-025)2 = 0491 x 1073 m?

The average tensile stress at A is then

P 40 x 103

6, = — = —————— = 814 MN/m?
4, 0491 x 10°°

The cross-sectional area at the root of the thread, section b, is
T
A, = y (0:021)2 = 0-346 x 1073 m?

The average tensile stress over this section is

P 40 x 10°

= = X 1156 MN/m?
%= 4, T 0346 x 1077 n

1.4 Tensile and compressive strains

In the steel wire experiment of Fig. 1.1 we discussed the extension of the whole wire.
If we measure the extension of, say, the lowest quarter-length of the wire we find that

for a given load it is equal to a quarter of the extension of the whole wire. In general we

find that, at a given load, the ratio of the extension of any length to that length is constant

for all parts of the wire; this ratio is known as the tensile strain.



