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Preface

Many present day technologies were developed on an empirical basis,
through much hard work and with remarkable success. However, all were
achieved without benefit of a basic understanding of rate controlling
processes, and the interaction of transport processes with chemical
kinetics. These interactions are most important with fast reactions that are
strongly exothermic or endothermic, exactly the ones preferred for
industrial production. Therefore, many opportunities exist for improving
present day production technologies through a better insight into the
details of rate processes.

The influence of transport process in two—phase reaction systems depends
on flow conditions, which change with the size of the equipment. This is
the reason for the historic observation that performance changes as
processes are scaled up and therefore scale—up should be done in several
steps, each limited to a small increase in size. This is a slow and expensive
method and still does not guarantee optimum design.

Effects of transport processes cannot be ignored in investigations aimed at
more fundamental aspects of kinetics and catalysis. The interaction of
chemical and physical processes was noticed a long time ago. M. V.
Lomonosov mentioned in 1745:

“I not only saw from other authors, but am convinced by my own
art, that chemical experiments combined with physical, show
peculiar effects.”

The need to design production units on a fundamental kinetic basis was
recognized for a long time, yet the basic need to distinguish between rates
influenced by transport and true chemical rates, was not fully
comprehended and came only later.

! As quoted by Frank-Kamenetevskii (1961) in the preface to his book.

xi
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At the First European Symposium on Chemical Engineering, Amsterdam,
(1957) the definition for Chemical Reaction Engineering was accepted as:

“Chemical reaction engineering is part of chemical engineering in
general. It aims at controlling the chemical conversion on a
technical scale and will ultimately lead to appropriate and
successful reactor design. An important part is played by various
factors, such as flow phenomena, mass and heat transfer, and
reaction kinetics. It will be clear that in the first place it is
necessary to know these factors separately.

Yet this knowledge in itself is insufficient. The development
of chemical conversion on a technical scale can only be
understood from the relation and interaction between the above
mentioned factors”.

Damkohler (1936) studied the above subjects with the help of dimensional
analysis. He concluded from the differential equations, describing chemical
reactions in a flow system, that four dimensionless numbers can be derived
as criteria for similarity. These four and the Reynolds number are needed
to characterize reacting flow systems. He realized that scale-up on this
basis can only be achieved by giving up complete similarity. The
recognition that these basic dimensionless numbers have general and wider
applicability came only in the 1960s. The Damkohler numbers will be used
for the basis of discussion of the subject presented here as follows:

rl rl? _ r(=AH,)!

Da;=——, Da;= , Dap = -
Cu CD c,pTu
—AH )12
Diggy =Bkl e 1L
kT M

In a later paper Damkohler (1937) also defined :

- 1

Da, =Da ,/Nu = CAH )
hT

This will be used here, too.

In the mid 1960s, computers became available and this made many
calculations possible, including the simultaneous integration of several
coupled differential equations. With this, the execution of many design
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tasks—formerly very time consuming and approximate—became easy, fast
and seemingly accurate. Publications proliferated, with computer solutions
to many imagined and a few real problems. Only then was it realized that
good kinetic results, free of transfer influences, were woefully lacking.
This caused a general increase of interest in improving kinetic
measurements.

In 1960 the author was charged with the review and improvement of the
ethylene oxide technology of Union Carbide Corporation (UCC). A
historic overview revealed some interesting facts. The basic French patent
of Lefort (1931,1935) for ethylene oxide production was purchased by
UCC in 1936. In 1937, a pilot-plant was operated and commercial
production started in 1938. By 1960, UCC's production experience was
several hundred reactor-years. This was expressed as the sum of the
number of production reactors, each multiplied by the number of years it
had been in operation. Research and development had continued since the
purchase of the original patent and the total number of people involved in
ethylene oxide related research at one time reached one hundred.

Development of the first recycle reactor was one of the consequences of a
challenging situation. The ethylene oxide process had reached a high level
of sophistication and excellent performance after 25 years of continuous
R&D. To improve results achieved by so many excellent people over so
many years was a formidable task.

In previous studies, the main tool for process improvement was the tubular
reactor. This small version of an industrial reactor tube had to be operated
at less severe conditions than the industrial-size reactor. Even then,
isothermal conditions could never be achieved and kinetic interpretation
was ambiguous. Obviously, better tools and techniques were needed for
every part of the project. In particular, a better experimental reactor had to
be developed that could produce more precise results at well defined
conditions. By that time many home-built recycle reactors (RRs), spinning
basket reactors and other laboratory continuous stirred tank reactors
(CSTRs) were in use and the subject of publications. Most of these served
the original author and his reaction well but few could generate the mass
velocities used in actual production units.
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Recycle reactors at that time were called “Backmix Reactors.” They were
correctly considered the worst choice for the production of a reactive
intermediate, yet the best for kinetic studies. The aim of the kinetic study
for ethylene oxidation was to maximize the quality of the information,
leaving the optimization of production units for a later stage in engineering
studies. The recycle reactors could provide the most precise results at well
defined conditions even if at somewhat low selectivity to the desired
product.

The RR developed by the author at UCC was the only one that had a high
recycle rate with a reasonably known internal flow (Berty, 1969). This
original reactor was named later after the author as the “Berty Reactor”.
Over five hundred of these have been in use around the world over the last
30 years. The use of Berty reactors for ethylene oxide process
improvement alone has resulted in 300 million pounds per year increase in
production, without addition of new facilities (Mason, 1966). Similar
improvements are possible with many other catalytic processes. In recent
years a new blower design, a labyrinth seal between the blower and
catalyst basket, and a better drive resulted in an even better reactor that
has the registered trade name of “ROTOBERTY®.”

Many of the methods discussed in this book stem from the practical
experience of the author, who worked for 20 years at Union Carbide
Corporation. Other experience came from consulting work for over 30
companies, and from the laboratory of Berty Reaction Engineers, Ltd. The
corresponding theoretical treatments were developed while teaching six
professional short courses and lecturing at the State University of New
York at Buffalo, NY, The University of Akron, at Akron, OH, and as a
Senior Fulbright Scholar at the Technical University of Munich, Germany.
The final assembly of the book was started when the author again taught a
short course at the University of Veszprém in Hungary after a 36 year
interruption.

The aim of the book is to give practical advice for those who want to
generate kinetic results, valid for scale-up, and backed by sensible theory
and understandable mathematical explanation.
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Methanol synthesis will be used many times as an example to explain some
concepts, largely because the stoichiometry of methanol synthesis is
simple. The physical properties of all compounds are well known, details
of many competing technologies have been published and methanol is an
important industrial chemical. In addition to its relative simplicity,
methanol synthesis offers an opportunity to show how to handle reversible
reactions, the change in mole numbers, removal of reaction heat, and other
engineering problems.

To facilitate the use of methanol synthesis in examples, the “UCKRON”
and “VEKRON” test problems (Berty et al 1989, Arva and Szeifert 1989)
will be applied. In the development of the test problem, methanol synthesis
served as an example. The physical properties, thermodynamic conditions,
technology and average rate of reaction were taken from the literature of
methanol synthesis. For the kinetics, however, an artificial mechanism was
created that had a known and rigorous mathematical solution. It was
fundamentally important to create a fixed basis of comparison with various
approximate mathematical models for kinetics. These were derived by
simulated experiments from the test problems with added random error.
See Appendix A and B, Berty et al, 1989.

The “UCKRON” AND “VEKRON?” kinetics are not models for methanol
synthesis. These test problems represent assumed four and six elementary
step mechanisms, which are thermodynamically consistent and for which
the rate expression could be expressed by rigorous analytical solution and
without the assumption of rate limiting steps. The exact solution was more
important for the test problems in engineering, than it was to match the
presently preferred theory on mechanism.

Conclusions from the test problems are not limited by any means to
methanol synthesis. These results have more general meaning. Other
reactions also will be used to explain certain features of the subjects. Yet
the programs for the test problem make it possible to simulate experiments
on a computer. In turn, computer simulation of experiments by the reader
makes the understanding of the experimental concepts in this book more
profound and at the same time easier to grasp.
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Notations

Symbol | Definition Units

A, chemical compound mol

a thermal diffusivity = k¢ /cp m*/s

3 activity = (f/f,) -

C concentration of species A; mol/m’

c specific heat of fluid kJ/kg K

D.g diffusivity of A in B m’/s

dp particle diameter m

d. tube diameter, inside m

E energy of activation kJ/kmol

F force = newton kg m/s*

F total molar flow rate mol /s

F; molar flow rate of A; mol /s

F volumetric flow rate m’/s

f fugacity = pascal Pa

G mass velocity kg/m"s

g acceleration of gravity = 9.81 m’/s

AH heat of reaction kJ / mol

h¢ film coefficient for heat transfer W/m"s

K equilibrium constant = a,"/ag" -

k reaction rate coefficient 1/s

ky mass transfer coefficient m/s

k¢ thermal conductivity W/mK
&r momentum transfer coefficient m/s

1 distance m

M molar density. 1/1000 MW mol/kg

m integral number -

MW molecular weight kg / kmol

N number of moles mol

n order of reaction -

P pressure kPa

R gas constant = 8.314 J/mol K

R, total rate of change of A; mol / m’ s

R, inside tube radius m

I rate of reaction i mol / m’ s
| Qgen rate of heat generation W/m’

S selectivity, fractional -

S surface m”

SS steady state -

T temperature K




xviii

Experiments in Catalytic Reaction Engineering

Svmbol

Definition

Units

clock time

linear velocity

m/s

overall heat transfer coefficient

W/ m*K

time constant ratio

volume

weight of catalyst

power = watts

mole fraction in liquid, on catalyst surface

conversion, fractional

mol fraction in gas

Yield, fractional

N[t x| |2 [g|<|glel= |~

Efficiency, fractional

Greek Letters

o

stoichiometric coefficient

adiabatic temperature rise potential

Arrhenius number = E / RT*

change in the sum of stoichiom. no.s

void fraction in catalyst bed

kinematic viscosity

catalytic effectiveness factor, fractional

void fraction in catalyst pores

T |3 |3 |0 |0

dynamic viscosity

density

aQ

tortuosity factor

©

Thiele modulus = (d./3)(k/D)*°

Weisz—Prater criterion = nhcb2 =Day

Superscripts

S

at standard temp and press. of 273.1 K and 101.3 kPa
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Subscripts

XIX

bed

fluid —

reactions =

compounds

mass =

feed conditions -

particle —

products -

reactants =~

catalv_st

surface -

solid _

~lw [n|alx|ote o |3 |||

total -

Dimensionless Numbers

‘Al momentum transfer / momentum cond., (analog | =k,1/n
to Sh and Nu numbers)
‘B’ momentum production/momentum cond., =F/pnul
(analog to St and f"/ 2 numbers)
Bi Biot (heat transfer/thermal cond. of solid) = Nu(kvk,,)
Bo Bodenstein (Pe number for mass) =ul/D
B adiabatic temperature rise potential =C(-AH)/pcT
Ca Carberry =rl/CKkn
Da; Damkéhler number — I =rl/Cu
Dag Damkéhler number — II =rl*/CD
Dap Damkdéhler number — 111 =r(-AH) U/pcTu
Day | Damkshler number — IV =r (-AH) I/ k,
Day Damkdéhler number — V =r(-AH)1/hT
f/2 Fanning friction factor = kn/u
‘E! momentum production/ conduction =F/p kyul’
Fr Froud = 1/Fa = |/Fanning =u/gl
Ha Hatta number = \/(kD)/kg
ip Colburn factor for mass (Sh Sc™°) = (k, I D)(m/D)’*
jH Colburn factor for heat (St Pr”°) =(th/pc u)(n/a)®®®
Le Lewis number =a/D
Nu Nusselt number =hl/k,
Pe Peclet number =ul/a
Pr Prandtl number

=1n/a=cwkt
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Re Reynolds number =ul/n

Sc Schmidt number =n/D

Sh Sherwood number =k 1/D
St Stanton number =h/pcu
St’ Stanton number for mass =k, /u

We Weber number =pu’l’/F

A, B, E are unnamed numbers results of the systematization by

Laszl6 (1964).

The unnamed number C is now called the Carberry number, and D is
identical with Dajv-=Day.
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