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Preface

By application of counting techniques it is possible to obtain quantitative infor-
mation about the orientation distribution of crystallites in polycrystalline mate-
rials. This has created a need for the mathematical treatment of the orientation
distribution function, and the relationships between various functions, such as
pole figures, inverse pole figures, three-dimensional orientation distribution func-
tions and directionally dependent physical properties. In the present book an
effort will be made to give a unified presentation of these relationships. It is
shown that the representation of the orientation distribution function as a series
expansion is a very useful aid for its numerical calculation. The relations between
the single crystal properties and texture and the corresponding polycrystal pro-
perties also follow particularly simply and logically in this representation. For these
reasons I have restricted myself almost exclusively to this form of representation.

Textures have been studied chiefly in metallic materials. They are in principle
of importance, not only for these, but also for all polycrystalline materials. The
relationships between the various orientation distribution functions and the me-
thods of their treatment are largely independent of the particular material. They
are therefore applicable to ceramic materials or partially crystalline synthetics
in a manner completely analogous with that for metals.

This book is intended for those who are concerned with the orientation distribu-
tion of crystallites. It seeks to provide some mathematical aids for the quanti-
tative treatment of such problems.

At this point I should like to express my sincere thanks to several of my col-
leagues for their support during, writing and correction of the manuscript. Professor
BorLL-DORNBERGER has undertaken a critical review of the manuscript. Dr
H. ScemiTTLER displayed particular interest in the writing of the book. She has
contributed many valuable suggestions in numerous discussions during drafting
of the manuscript and has called my attention to a number of errors. She has
very intensively examined the manuscript and corrections. I should also like to
thank Mr J. TosiscH and Mrs U. ScHLAFER for their help with the corrections.

HAaxs-JoacHIM BUNGE
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Since the first appearance of this book in 1969 quantitative texture analysis has
developed very rapidly. Since large enough computers have become easily acces-
sible in recent years, the calculation of the orientation distribution function
(ODF) from experimentally determined pole figures or even incomplete (back-
reflection) pole figures can be regarded as a routine procedure which is carried
out by available computer programs. The user of this method does not need to be
concerned with the mathematics involved. Several brief reviews directed mainly
towards the practical use of the ODF method are available51:562:57:59,62—64,171,233,236

The result obtained, the ODF, is much easier to interpret because it is an un-
ambiguous representation of the texture data compared with pole figures which
cannot distinguish by themselves between crystal orientations rotated about the
normal of the reflecting lattice plane. Thus, in recent years a large number of
texture investigations have been presented in the form of ODF, while in the first
edition of this book reference could be made only to a very small number of actual
numerical calculations. Chapter 11, dealing with some results of texture analysis,
has therefore been completely rewritten. Changeshave also been made in Section 2.1,
which describes the various orientation parameters used by different authors and
the relations between them.

Only very recently have the implications of the centre of inversion as a sym-
metry element been considered in greater detail. This has led to extending the
considerations to polycrystalline materials containing right- and left-handed
crystals which must thus be looked at as being two-phase materials which are to
be described by two independent texture functions. The description of the sample
symmetries thus requires black—white point groups instead of the ordinary
ones. Also, in many cases the odd terms of the series expansion have to be taken
into account. These problems have been considered in the additional Sections 4.11
for general textures and 5.10 for fibre textures. The implications of the odd part
of the texture function have not yet been considered in most of the numerical
calculations carried out thus far, but this particular aspect of ODF analysis is
in a very effervescent state of development at present.

The concept of the texture transformation by means of an orientation relation
function had been treated among other problems in the first edition, Section 10.1,
in connection with the development of recrystallization textures from deformation
textures. However, exactly the same formalism holds also for phase transforma-
tion if the product crystals have the same symmetry as the parent crystals, as
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is the case, for example, in the y — « transformation in steels or the o« — f§ trans-
formation in brasses. Because of its great importance in texture formation a special
chapter has been devoted to texture transformation (Chapter 8), including also
the general case of change of crystal symmetry.

In the first edition, Section 4.9, a system of ALGOL programs was mentioned
by which ODF of cubic-orthorhombic symmetry had been calculated. These pro-
grams have been used for quite a number of ODF calculations but they have not
been published in detail. On the basis of these programs, however, a set of
FORTRAN programs has been developed which have been published in the full
text.1’ In Chapter 9 we therefore give these FORTRAN programs along with
the library program by WAGNER, EsLiNG and Baro. 292

Although a comprehensive error analysis of the mathematical procedure leading
from pole figures with their experimental errors to ODF has not yet been devel-
oped, a number of different error estimations have been used. Some of them have
been described in reference I, Chapter 7, along with the experimental examples.
With increasing experimental accuracy, e.g. by the application of neutron diffrac-
tion, and with increasing demand for ODF’s as accurate as possible, the error
analysis becomes more and more important. Hence, a special section was devoted
to the estimate of errors. In Chapter 13, dealing with the anisotropy of physical
properties, some additions have been made, especially with respect to the plastic
properties. In Chapter 14 on mathematical aids the sign convention of the asso-
ciated LEGENDRE functions has been changed with respect to that used in refer-
ence I. Furthermore, Section 14.3 has been changed according to the FOURIER
coefficients @™, which seem to be the most economic way of representing the
generalized spherical harmonics.

Finally, Chapter 15, the numerical tables, and Appendix A.4, the graphic repre-
sentations, have been changed. The coefficients Q7" and By are the fundamental
quantities by which all the other quantities can easily be expressed. Tables of these
quantities have therefore been given up to ! = 34, which is assumed to be a reason-
able upper limit for practical texture calculations. (The value L = 100 as given in
some of the tables in reference I seems much too high compared with the experi-
mental accuracy and the obtainable resolving power.) Tables of the deduced
quantities are given only up to an I of much lower degree, just for checking pur-
poses, since it is assumed that these quantities will never be used as primary data.
The @;* and Bj* of Tables 15.1.1 and 15.2.1 might be used as primary data for
texture calculations (although it is recommendable to produce them by the li-
brary program inside the computer). The numerical tables have been calculated
by Dr C. EsLiNg and Mme Ing. E. BECHLER, Metz. The computations were carried
out in the computer centre IRSID, Maiziéres-les-Metz under the supervision of
Mr J. C. FiLLER, whose helpful support is gratefully acknowledged. The tables
have been recalculated from the very beginning without making use of any pri-
mary numerical data. The tables given are photoreproductions of the computer
outputs so that typing errors as they occurred in the hand-set tables in reference I
have been avoided.
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The main part of the book, Chapters 4 and 5, remained nearly unchanged. It
should be mentioned that in equations (2.17) and (2.20) in reference I a symmetry
assumption according to the cubic symmetry was made which is not correct for
the lower symmetries. Thus, in equation (4.35) in the case of lower symmetries
the complex conjugate notation is required. I am very much indepted to Dr
C. EsrLiNe for making me aware of this error. He also read carefully the whole
manuscript and drew my attention to several mistakes. In numerous valuable
discussions he contributed much to the finishing of the book.

I also wish to express my gratitude to P. R. Morris. He not only carried out
the laborious task of the translation, but also as an experienced worker in ODF
analysis made many valuable comments on the contents, especially Section 4.10,
the comparison between the two notations used in the series expansion me-
thod. :

Finally, I should like to acknowledge many helpful discussions with Dr J. Pos-
PIECH, who especially contributed to the methods of numerical calculations and
provided the numerical example given in Section 9.6.
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