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Preface

In selecting the subject matter of this book, I have attempted to confine
myself to the irreducible minimum of absolutely essential material. The
course is dominated by two central ideas and their ramifications: The
theorem on rectifiability of a vector field (equivalent to the usual theorems
on existence, uniqueness, and differentiability of solutions)-and the theory
of one-parameter groups of linear transformations (i.e., the theory of
linear autonomous systems). Accordingly, I have taken the liberty’ of
omitting 2 number of more specialized tepics usually included in books
on ordinary differential equations, e.g., elementary methods of integra-
tion, equations which are not solvable with respect to the derivative,
singular solutions, Sturm-Liouville theory, first-order partial differential
equations, etc. The last two topics are best considered in a course on
partial differential equations or calculus of variations, while some of the
others are more conveniently studied in the guise of exercises.

On the other hand, the applications of ordinary differential equations
to mechanics are considered in more than the customary detail. Thus the
pendulum equation appears at the very beginning of the book, and the
efficacy of various concepts and methods introduced throughout the book
are subsequently tested by applying them to this example. In thisregard,
the law of conservation of energy appears in the section on first integrals,
the “method of small parameters” is deduced from the theorem on differ-
entiation with respect to a parameter, and the theory of linear equations
with periodic coefficients leads naturally to the study of the swing (“‘para-
metric resonance’’). l

Many of the topics dealt with here are treated in a way drastically
different from that traditionally encountered. At every point I have tried
to emphasize the geometric and qualitative aspect of the phenomena
under consideration. In keeping with this policy, the book is full of figures
but contains no formulas of any particular complexity. On the other hand,
it presents a whole congeries of fundamental concepts (like phase space
and phasé flows, smooth manifolds and tangent bundles, vector fields and
one-parameter groups of diffeomorphisms) which remain in the shadows
in the traditional coordinate-based approach. My book might have been
considerably abbreviated if these concepts could have been regarded as
known, but unfortunately they are not presently included in courses
either on analysis or geometry. Hence I have been compelled to present
them in some detail, without assuming any background on the part of
the reader beyond the scope of the standard elementary ¢ourses on analysis
and linear algebra.

This book stems from a year’s course of lectures given by the author
to students of mathematics at Moscow University during the academic
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years 1968-1969, and 1969-1970. In preparing the lectures for publica-
tion I have received great assistance from R. I. Bogdanov. I wish to thank
him and all my colleagues and students who have commented on the
preliminary mimeograph edition of the book (Moscow University, 1969).
I am also grateful to D. V. Anosov and S. G. Krein for their careful read-
ing of the manuscript.

V. I. Arnold



Frequently Used Notation

"R the set (group, field) of real numbers.
C the set (group, field) of complex numbers.
Z the set (group, ring) of integers.
& the empty set
xe€ X c Y anelement x of a subset X of a set Y.
XuY, XNnY theunion and intersection of the sets X and Y.
X\Y, X\a the setof elements in X but not in ¥, the set X minus the
element a € X. ‘
f: X > Y amapping fofaset XintoasetY.
x — y the mapping carries the point x into the point y.
fog the product (composition) of two mappings (g is applied first).
3,V, = there exists, for every, implies.
Theorem 0.0 the unique theorem in Sec. 0.0.
 end of proof symbol.
* an optional (more difficult) problem or theorem.
R" a linear space of dimension n over the field R.
R, + R, thedirect sum of the spaces R; and R,.
GL(R") the group of linear automorphisms of R".

One can consider other structures as well in the set R", e.g., affine or
Euclidean structure, or even the structure of the direct product of n lines.
This will usually be spelled out explicitly, by referring to “the affine space
R","“the Euclidean space R",” ‘“‘the coordinate space R",”” and so on.

Elements of a linear space are called vectors, and are usually denoted b‘y
boldface letters (v, &, etc.). Vectors of the space R" are identified with sets of

n numbers. For example, we writev = (v, ...,2,) =ve; + - + y.e,
where the set of n vectors e,, ..., e, is called a basis in R". The norm
(length) of the vector v in the Euclidean space R" is denoted by {v| and the
scalar product of two vectorsv = (vy,...,7,),w = (w,,...,w,) € R"by
(v, w). Thus

(v, w) = vw; + *+ + W,

vl = /(v,v) = o2 + -+ + 02

, :

We often deal with functions of a real parameter ¢ called the time. Differ-
entiation with respect to ¢ (giving rise to a velocity or rate of change) is usually
denoted by an overdot, asin X = dx/dt.
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Basic Concepts

1. Phase Spaces and Phase Flows

The theory of ordinary differential equations is one of the basic tools of
mathematical science. The theory allows us to study all kinds of evolutionary
processes with the properties of determinacy, finite-dimensionality, and differ-
entiability. Before undertaking exact mathematical definitions, we consider

a few examples.

1.1. Examples of evolutionary processes. A process is said to be
deterministic if its entire future course and its entire past are uniquely deter-
mined by its state at the present instant of time. The set of all possible states
of a process is called its phase space.

Thus, for example, classical mechanics considers the motion of systems
whose past and future are uniquely determined by the initial positions and
initial velocities of all points of the system. The phase space of a mechanical
system is just the set whose typical element is a set of instantaneous positions
and velocities of all particles of the system.

-The motion of particles in quantum mechanics is not dcscrlbed by a
deterministic process. Heat propagation is a semi-deterministic process, in
that its future is determined by its present but not its past.

A process is said to be finite-dimensional if its phase space is finite-dimen-
sional, i.e., if the number of parameters required to describe its state is
finite. Thus, for example, the classical (Newtonian) motion of a system con-
sisting of a finite number of particles or rigid bodies comes under this head-
ing. In fact, the dimension of the phase space of a system of n particles is just
6n, while that of a system of n rigid bodies is just 12n. As examples of pro-
cesses which cannot be described by using a finite-dimensional phase space,
we cite the motion of fluids (studied in hydrodynamics), oscillations of
strings and membranes, and the propagation of waves in optics and
acoustics.

A process is said to be dgﬂ@rentzable if its phase space has the structure of a
differentiable manifold and if its change of state with time is described by
differentiable functions. For example, the coordinates and velocities of the
particles of a mechanical system vary in time in a differentiable manner,
while the motions studied in shock theory do not have the differentiability
property. By the same token, the motion of a system in classical mechanics
can be described by using ordinary differential equations, while other tools
are used in quantum mechanics, the theory of heat conduction, hydrody-
namics, the theory of elasticity, optics, acoustics, and the theory of shock
waves.

The process of radioactive decay and the process of reproduction of bac-
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teria in the presence of a sufficient amount of nutrient medium afford two
more examples of deterministic finite-dimensional differentiable processes.
In both cases the phase space is one-dimensional, i.e., the state of the process
" is determined by the quantity of matter or the number of bacteria, and in
both cases the process is described by an ordinary differential equation.

It should be noted that the form of the differential equation of the process
and the very fact that we are dealing with a deterministic finite-dimensional
differentiable process in the first place, can only be established experimen-
tally—and hence only with a certain degree of accuracy. However, this
state of affairs will not be emphasized at every turn in what follows; instead,
we will talk about real processes as if they actually coincided with our
idealized mathematical models.

1.2. Phase flows. An exact formulation of the general principles just
presented requires the rather abstract notions of phase space and phase flow.
To familiarize ourselves with these concepts, we consider an example due
to N. N. Konstantinov where the simple act of introducing a phase space
allows us to solve a difficult problem.

Problem 1. Two nonintersecting roads lead from City 4 to Gity B (Fig. 1).
Suppose it is known that two cars connected by a rope of length less than 2/
manage to go from A4 to B along different roads without breaking the rope.
Can two circular wagons of radius / whose centers move along the roads in
opposite directions pass each other without colliding ?

Solution. Consider the square

M = {(x,%):0 <x < l,Osngl}

Fig. 1 Initial position of the wagons.

Fig. 2 Phase space of a pair of vehicles.
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(Fig. 2). The position of two vehicles (one on the first road, the other on the
second road) can be characterized by a point of the square A - we need only
let x; denote the fraction of the distance from 4 to B along the ith road which
lies between 4 and the vehicle on the given road. Clearly there is'a point of
the square M corresponding to every possible state of the pair of vehicles.
The square M is called the phase space, and its points are called phase points.

Thus every phase point corresponds to a definite position of the pair of
vehicles (apart from their being connected), and every motion of the vehicles
is represented by a motion of the phase point in the phase space. For ex-
ample, the initial position of the cars (in City 4) corresponds to the lower
left-hand corner of the square (x, = x, = 0), and the motion of the cars
from A to B is represented by a curve going to the opposite (upper right-
hand) corner of the square. In just the same way, the initial position of the
wagons corresponds to the lower right-hand corner of the square (x; = 1,
x, = 0), and the motion of the wagons is represented by a curve leading to
the opposite (upper left-hand) corner of the square. But every pair of curves
in the square joining different pairs ot opposite corners must intersect.
Therefore, no matter how the wagons move, there comes a time when the*
pair of wagons occupies a position occupied at some time by-the pair of cars.
At this time the distance between the centgrs of the wagons will be less than
2[, and they will not manage to pass each other.

Although differential equations play no role in the above example, the
considerations which are involved closely resemble those which will concern
us subsequently. Description of the states of a process as points of a suitable
phase space often turns out to be extraordinarily useful.

We now return to the concepts of determinacy, finite-dimensionality,and
differentiability of a process. The mathematical model of a detetministic
process is a phase flow, which can be described as follows in intuitive terms:
Let M be the phase space and x € M an initial state of a process, and let g'x
denote the state of the process at time ¢, given that its initial state is x. For
every real ¢ this defines a mapping

&M M

* of the phase space into itself. The mapping g', called the t-advance mapping,
maps every state x € Minto a new state g'x € M. For example, g°is the iden-
tity mapping which leaves every point of M in its original position. More-
over

l g‘+‘ =g'e,

since the state y = g%« (Fig. 3), into which x goes after time s, goes after time
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xz

Fig. 3 Change of state of a process in the course of time.

Fig. 4 Motion of a phase point in the phase space M.

t+s

{into the same state z = g'p as the state z = g'"*x into which x goes after

umet + s.

Suppose we fix a phase point x € M, i.e., an initial state of the process. In
lh/c course of time the state of the process wxll change, and the point x will
describe a phase curve {g'x, t € R} in the phase space M. It is just the family
of t-advance mappings g': M — M that constitutes a phase flow, with each
phase point moving along its own phase ¢urve.

We now.turn to precise mathematical definitions. In each case M is an
arbitrary set.

Definition. A family {g'} of mappings of a set M into itself, labelled by the set
of all r‘eql'humbcrs (t € R), is called a one-parameter group of transformations of
Mif
/
oF v (1)
for all's, e R and g° is the identity mapping (which leaves every point
fixed). ; .

Prablem 2. Prove that a one-parameter group of transformations is a commutative group
and that cvery mapping g': M — M is one-to-one.

Definition. A pair (M, {g'}) consisting of a set M and a one-parameter group
{g'} of transformations of M into itself is called a phase flow. The set M is
called the phase space of the flow, and its elements are called phase points.

De/mzlwn Let x € M be any phase point, and consider the mapping
¢o:R - M, o) = g'x (2)

of the real line into phase space (Fig. 4). Then the mapping (2) is called the
motion of the point x under the action of the flow (M, {g'}).
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M
Fig. 5 Phase curves.
M
()
I ¢ R

Fig. 6 An integral curve in extended phase space.

Definition. The image of R under the mapping (2) is called a phase curve of the
flow (M, {g'}). Thus a phase curve is a subset of phase space (Fig. 5).

Problem 3. Prove that there is one and only one phase curve passing through every point
of phase space.

Definition. By an equilibrium position or fixed point x € M ofa flow (M, {g'}) is
meant a phase point which is itself a phase curve:

g'x =x .VteR.

The concepts of extended phase space and integral curve are associated with
the graph of the mapping ¢. First we recall that the direct product A x B of
two given sets 4 and B is defined as the s¢t of all ordered pairs (g, b), a € 4,
b € B, while the graph of a mapping f: A — B is defined as the subset of the
direct product 4 x B consisting of all points (a, f(a)), a € 4.

Definition. By the extended phase space of a flow (M, {g'}) is meant the direct
product R x M of the real t-axis and the phase space M. The graph of the
motion (2) is called an integral curve (Fig. 6) of the flow (M, {g'}).

Problem 4. Prove that there is one and only one lntegral curve passing through every point
of extended phase space.

Problem 5. Prove that the horizontal line R X x, x e M is an integral curve if and only if
'x is an equilibrium position.
Problem 6. Prove that a shift
Bi(Rx M)— R x M), ktx) =(+s

{.

of extended phase space along the time axis carries integral curves into integral curves.
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1.3. Diffeomorphisms. The above definitions formalize the concept of a
deterministic process. The corresponding formalization of the concepts of
finite-dimensienality and differentiability consists in requiring that the
phase space be a finite-dimensional differentiable manifold and that the phase
flow be a one-parameter group of diffeomorphisms of this manifold.

We now clarify these terms. Examples of differentiable manifolds are
afforded by Euclidean spaces and their open sets, circles, spheres, tori, etc.
A general definition will be given in Chap. 5, but for the time being it can be
assumed that we are talking about an (open) domain of Euclidean space.

By a differentiable function f: U — R defined in a domain U of n-dimen-
sional Euclidean space R" with coordinates x, . . ., x, we mean an r-fold
continuously differentiable function f(x, ..., x,) where | <7 < c0. In
most cases the exact value of 7 is of no interest and hence will not be indi-
cated;in cases where it is required, we will allude to “r-differentiability”” or
the function class C".

By a differentiable mapping f: U — V of a domain U of n-dimensional

Euclidean space R" with coordinates x,, ..., x, into a domain V of m-
dimensional Euclidean space R™ with coordinates y,, ..., y, we mean a
mapping given by differentiable functions y; = fi(x,, . .., x,). This means

“that if y;: ¥ — R are the coordinates in V, then y; o f: U — R are differ-

entiable functions in U (1 <1 < m).
By a diffeomorphism f: U — V we mean a one-to-one mapping such that

both fand f ~!: ¥ — U are differentiable mappings.
Problem 1. Which of the following functions specify a dxﬂ'eomorphnsm SiR — Rof thc. line
onto the line:

S(x) = 2x, x2, %3, ¢*, ¢* + x?
Problem 2. Prove that if f: U — V is a diffeomorphism, then the Euchdcan spaces with the
domains U and V as subsets have the same dimension.
Hint. Use the implicit function theorem.
Definition. By a one-parameter group {g'} of diffeomorphisms of a manifold M
(which can be thought of as a domain in Eucfidean space) is meant a map-
ping

R x Mo M, gt x) =g's, teR, xeM

of the direct product R x M into M such that

1) gis a differentiable mapping;

2) The mapping g': M — M is a diffeomorphism for every t € R;

3) The family {g', ¢ € R} is a one-parameter group of transformations of M.
Example 1. M = R, g'x = x + vt (veR).

Remark. Property 2 is a consequence of properties 1) and 3) (why?).
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1.4. Vector fields. Let (M, {g'}) be a phase flow, given by a one-parameter
group of diffeomorphisms of a manifold M in Euclidean space.

Definition. By the phase velocity v(x) of the flow g' at a point x € M (Fig. 7) is
meant the vector representing the velocity of motion of the phase point, i.e.,
d t

= = . 3
G| e =i ®)

The left-hand side of (3) is often denoted by . Note that the derivative is
defined, since the motion is a differentiable mapping of a domain in Euclid-
ean space.

Problem 1. Prove that

d
Zl,. 2% = v(g=),

“i.e., that at every instant of time the vector representing the velocity of motion of the
phase point equals the vector representing the phase velocity at the very point of phase
space occupied by the movinp point at the given time. ’

Hint. See (1). The solution id given in Sec. 3.2.

If x,,..., x, are the coordinates in our Euclidean space, so that
x;: M - R, then the velocity vector v(x) is specified by n functions
v;: M > R,i=1,...,n,called the components of the velocity vector:

d
vi(x) = 7 x,(g'x).
=0

Problem 2. Prove that u, is a function of class C*~! if the one-parameter group
g2:R X M — M is of class C". .

Definition. Let M be a domain in Euclidean space with coordinates
Xy, ..., %, (x;2 M - R), and suppose that with every point x € M there is
associated the vector v(x) emanating from x. Then this defines a wvector
fieldv on M, specified in the x; coordinate system by n differentiable functions
v;: M- R.

Fig. 7 The phase velocity vector.
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Fig. 8 A vector field.

Thus the aggregate of phase velocity vectors forms a vector field on the
phase space M, namely the phase velocity field v (Fig. 8).

Problem 3. Prove that if x is a fixed point of a phase flows, then v(x) = 0.

A point at which a vector of a given vector field vanishes is called a
singular point of the vector field.t Thus the equilibrium positions of-a phase
flow are singular points of the phase velocity field. The converse is true, but
is not so easy to prove. '

1.5. The basic problem of the theory of ordinary differential equa-
tions. The basic problem of the theory of ordinary differential equations
consists in investigating 1) one-parameter groups {g'} of diffeomorphisms
of a manifold M, 2) vector fields on M, and 3) the relations between 1) and
2). We have already seen that the group {g'} defines a vector field on M, i.e.,
the field of the phase velocity v, in accordance with formula (3). Conversely,
it turns out that a vector field v uniquely determines a phase flow (under
certain conditions to be given below).

Speaking informally, we can say that the vector field of the phase velocity
gives the local law of evolution of a process, and that the task of the theory of
ordinary differential equations is to reconstruct the past and predict the
future of the process from a knowledge of this local law of evolution.

1.6. Examples of vector fields.

Example 1. 1t is known from experiment that the rate of radioactive decay is
proportional to the amount x of matter present at any given time. Here the phase
space is the half-line

M = {x:x > 0}

(Fig. 9), and the indicated experimental fact means that

X = —kx, v(x) = —kx, k>0, (4)
t Note that the components of the field have no singularities at a singular po}nt, and in

fact are continuously differentiable. The term “singular point’ stems from the fact that the
direction of the vectors of the field changes near such a point, in general discontinuously. -
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M

Fig. 9 The phase space of radioactive dccay.‘
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Fig. 10 The phase plane for vertical fall.

i.e., the vector field v on the half line is directed toward 0 and the magni-
tude of the phase velocity vector is proportional to x.

Example 2. 1t is known from experiment that the reproduction rate of a colony of
bacteria supplied with enough food is proportional to the quantity x of bacteria present
at any given time. Again M is the half-line x > 0, but the vector field differs in

sign from that of the previous example:

X = kx, v(x) = kx, k> 0. (5)
Note that equation (5) corresponds to growth, with the increase propor-
tional to the number of individuals present.

Example 3. One can imagine a situation where the increase is proporéional to the
total number of pairs present, i.e.,

% = kx®, v(x) = kx? (6)
(this situation is more readily encountered in physical chemistry than in

biology). Later we will see the catastrophic consequences of the excessively
rapid law of growth (6).

Example 4. Vertical fall of a particle to the ground (starting from not too great an

" initjal height) is described experimentally by Galileo’s law, which asserts
that the acceleration is constant. Here the phase space M is the plane
(%1, x5), where x, is the height and x, the velocity, while Galileo’s law is
expressed by formulas like (3), namely

Xy = xy, X, = —¢g (7)

(—g is the acceleration due to gravity). The corresponding vector field of
the phase velocity has components v, = x,,v, = —g (Fig. 10).



