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The New Science of Cities



Science may be described as the art of systematic over-simplification—the art of discerning
what we may with advantage omit.

—LKarl Popper, The Open Universe: An Argument for Indeterminism (1992)
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Preface

We live in an age of cities. By the end of this century, it is likely that most of the
world’s population will be living in one type of city or another, as urbanization and
globalization become the norm and our past rural pursuits slowly disappear. When
all the world’s a city, it is questionable whether the term “city” will continue to have
the same resonance it has had for the last 5,000 years. Our focus on individual cities
will probably lessen as we explore the way a system of cities composed of most of
the world’s population actually functions. To understand what is happening, we
need to take seriously the idea that cities are places where people come together to
“interact” with one another. As our technologies enable people to connect ever more
easily and in many new ways, our understanding must be enriched by studies of
networks, interactions, connections, transactions, and every other possible way in
which we are able to communicate with one another.

This book takes literally the idea that cities are devices that enable us to com-
municate. In doing so, we are able to use them to increase our prosperity by provid-
ing environments in which we can work together, innovate together, and generally
share the fruits of our labors. Until quite recently, most of this sharing took place
in individual cities, but increasingly our technologies enable us to share and com-
municate at a distance. At one level, this is trade, and although fundamental to
ancient and modern societies, the global world that has emerged is dissolving our
reliance on material movements in favor of the ethereal and the social. Information
is replacing as well as complementing energy. Thus, to understand the contemporary
city—to fashion a science that is able to explain city growth, sprawl, decline, and
so on—we must underpin our theories with ideas about how we relate to one
another.

These ideas have been anticipated before. Fifty years ago, Jane Jacobs, in her
seminal book The Death and Life of Great American Cities (1961), argued that it
is not enough to simply study the location of things in cities as we have done in the
past; instead, we need to consider location as lying at the heart of how evolving
networks of relationships provide the cement that holds people together in cities.



xviil Preface

Richard Meier, in the preface to his book A Communications Theory of Urban
Growth (1962), talked of urban environments “continually bombarded by mes-
sages,” and he produced an outline for a theory of cities as kaleidoscopes of infor-
mation. Peter Haggett and Richard Chorley in their book Network Analysis in
Geography (1969) produced a wonderful and challenging review of the way net-
works were being used in geography that focused very much on parallels between
cities as human systems and geomorphologies as physical systems. Around the same
time, Waldo Tobler produced a long line of influential papers on geometry and flows
that served to keep the morphological message alive in geography until recent times,
when these ideas began at last to connect up with the new science introduced here.

Yet despite these occasional and prescient contributions, we have continued to
think of cities as spaces and places. We recognized that these were stitched together
by transportation, but we have never attempted to see the city as a set of networks
from which locations naturally emerge. We have always tried to unpack actions and
activities at locations into interactions rather than the other way around, by attempt-
ing to see locations as the product of interactions. In this book, 1 switch our tradi-
tional focus from locations to interactions and, in so doing, invoke many ideas about
networks and flows.

There is another traditional dimension to cities relating to their physical or spatial
form, and we will not downplay this here. It is quite possible, of course, to study
cities as networks and interactions without focusing on their form. Indeed, much of
the literature on urban studies tends to treat urban phenomena and cities as being
about aspatial and nonspatial issues, about processes, rather than about physical or
spatial form. But urban planning and design, which is the most obvious and perhaps
least intrusive way of intervening in the evolution of cities, is based on physical
rather than social or economic instruments of control and management. [ will keep
this perspective here, while acknowledging that we could treat the material of this
book in a very different manner, notwithstanding that the focus of our discussion
might be the same. My perspective is thus unashamedly about the physical and
spatial artifacts that define our cities. The tools I will introduce that underpin the
new science | argue is needed to grasp the challenges of the near future are thus
manifestly physical and spatial in their treatment of systems of cities and cities as
systems.

This is not a book that will tell you what the future city will be like or even how
one might create better cities, but it will provide what I consider tools for and per-
spectives on a science that can be used to explore these futures. Yet this world of
science will inevitably be incomplete, as science always is. Karl Popper’s wonderful
insight that science is “the art of discerning what we may with advantage omit,”
which is the quote I use to introduce this book, provides one of the leitmotifs for
this work. Readers need to be aware that this is a partial set of insights and that



Preface Xix

there are many directions in this science that are inevitably inconsistent with one
another, as I am at pains to emphasize in the concluding chapter. This science,
however, has not sprung Phoenix-like from the ashes of an earlier world, but builds
on strong traditions in social physics, urban economics, and transportation theory,
on regional science, urban geography, and of course on the systems approach to
physical planning, which has now morphed into the complexity sciences. I have a
deep respect for these traditions, and they are echoed everywhere in the text that
follows. More particularly, many of the ideas here build on my previous forays into
this way of thinking; as first represented in my book (with Paul Longley) Fractal
Cities: A Geometry of Form and Function (Academic Press, 1994; available for
download at http://www.fractalcities.org) and in my book Cities and Complexity:
Understanding Cities Through Cellular Automata, Agent-Based Models, and Frac-
tals (MIT Press, 2005). A summary of these ideas can be gleaned from http://www
.complexcity.info. Far be it for me to instruct you to read these, but the material
therein does underpin many of the approaches and methods introduced here.

There are many developments in this new understanding of cities that are cur-
rently emerging. I hint at these here, but they are implicit in the development of this
science and its application. The digital revolution has now penetrated our culture
so deeply that the many new forms of communication transforming our cities are
now yielding up their secrets in the form of very large databases, providing us with
opportunities for analysis and modeling that are quite different from those available
in an earlier age. Cities are becoming “smart,” and in many ways the kind of science
reported here can inform how they might become “smarter.” But more particularly,
the dissemination of this science using new forms of visualization offers new ways
of thinking about the design of future cities. I will not venture here into planning
support systems, participation in design using new online technologies, and the like,
but I am well aware of this movement, which forces us to embed these ideas into
the wider policy context. This, in fact, is the focus of my research group in the
Centre for Advanced Spatial Analysis at University College London, where various
research projects have provided me with some of the illustrations of “big data”
pertaining to networks and flows in cities used here. [ acknowledge particular con-
tributions below.

Many others have helped me get this far. Paul Longley, who worked with me on
fractals in the 1980s, has been my colleague for nearly thirty years, and his dry
humor continues to remind me that science is contingent and always temporary but,
nevertheless, that we should strive for the best. Peter Hall, my longtime mentor from
my first permanent appointment at Reading University in the 1970s, continues to
support this way of looking at cities while supporting many others who follow his
pluralistic approach, which is entirely consistent with the sentiments I express here.
There is a good group of urban morphologists at University College London whose
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work is complementary to these ideas. Stephen Marshall’s views on evolution and
cities, Bill Hillier’s ideas about how the physical and spatial syntax of cities molds
their function and vice versa, and Phil Steadman’s work on configurational forms
all find implicit expression in this work, and I thank them for their insights and
influence. 1 must also thank my original teachers George Chadwick and Brian
McLoughlin, who in the late 1960s introduced me to the systems approach in plan-
ning and set me on my way to where I stand on these matters today. They are sadly
long gone, but I hope they would recognize a little of their contributions in what
follows in this book. I fear they might not, for the terrain of how we understand
cities has changed radically and is still changing fast. However, in the methods and
models we use, there is still synergy and complementarity with their earlier era.

I want to thank the editorial team at MIT Press, particularly Susan Buckley,
Virginia Crossman, and Kristie Reilly for their splendid work on bringing the book
to publication.

My wife, Sue, helped me with some of the figures and proofs of the book, which
would not have been possible without her, and it is as much hers as mine. My son,
Daniel, remains a clever skeptic on all matters of cities and continues to test me on
the plausibility and wider import of the ideas therein. The book is for them.

Michael Batty
Welsh Saint Donats

Cowbridge, Vale of Glamorgan
October 2012
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