SOLID STATE
+ PHYSICS

E=
4 j; : SECOND EDITION
L i
= - QQ ‘

P
QO
9"" 0,ca

J. S. Blakemore



SOLID STATE
o 49,9 PHYSICS

,:2_*2'“'9""5""9 . SECOND EDITION

J. S. Blakemore

Department of Applied Physics and
Electrical Engineering
Oregon Graduate Center

CAMBRIDGE UNIVERSITY PRESS
Cambridge
London New York New Rochelle

Melbourne Sya'ﬁey



The right of the
Umversity of Cambridge
to print and scll
ull manner of books
was granted by
Menry VI in 1534,
The University has printed
and published continuously
since 1584.

~=

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 IRP

32 East 57th Street, New York, NY 10022, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© W. B. Saunders Company 1969, 1974
This edition © Cambridge University Press 1985

First published by W. B. Saunders Company 1969
second edition first published by W. B. Saunders Company 1974
This updated second edition first published by Cambridge University Press 1985

Printed in Great Britain at the University Press, Cambridge

British Library cataloguing in publication data
Blakemore, J. S.

Solid state physics. — 2nd ed.

1. Solid state physics

I. Title

530.4'1 QC176

Library of Congress Cataloguing in Publication Data
Blakemore, J. S. (John Sydney), 1927-

Solid state physics

Includes bibliographies and indexes

1. Solid state physics 1. Title
QC176.B63 1985 530.4'1 8547879

ISBN 0 521 30932 8 hard covers
ISBN 0 521 31391 0 paperback

UpP



PREFACE

This book was written as the text for a one quarter, or one semester,
introductory course on the physics of solids. For an undergraduate
majoring in physics, the associated course will usually be taken during the
last two undergraduate years. However, the book is designed also to meet
needs of those with other degree majors: in chemistry, electrical
engineering, materials science, etc.,, who may not encounter this
requirement in their education untii graduate school. Some topics discussed
(band theory, for example) require familiarity with the language and
concepts of quantum physics; and an assumed level of preparedness is one
semester of ““modern physics’’. A reader who has taken a formal quantum

mechanics course will be well prepared, but it is recognized that this is often’

not possible. Thus Schrédinger’s equation is seen from time to time, but
formal quantum mechanical proofs are side-stepped.

The aim is thus a reasonably rigorous — but not obscure — first ex-
position of solid state physics. The emphasis is on crystalline solids,
proceeding from lattice symmetries to the ideas of reciprocal space and
Brillouin zones. These ideas are then developed: for lattice vibrations, the
theory of metals, and crystalline semiconductors, in Chapters 2, 3, and 4
respectively. Aspects of the consequences of atomic periodicity comprise
some 75 9%, of the book’s 500 pages. In order to keep the total exposition
within reasonable bounds for a first solid state course, a number of other
aspects of condensed matter physics have been included but at a relatively
brief survey level. Those topics include lattice defects, amorphous solids,
superconductivity, dielectric and magnetic phenomena, and magnetic
resonance.

The text now offered is on many pages unchanged from that of the
1974 second edition published by Saunders. However, the present
opportunity to offer this book through the auspices of Cambridge
University Press has permitted me to correct some errors, add some needed
lines of explanation (such as at the end of Section 1.5), revise some figures,
and update the bibliographies following this preface and at the end of each
chapter. The SI system of units, adopted for the second edition, is of course
retained here. T'wo exceptions to the SI system should be noted: retention
of the /ingstrom unit in describing interatomic distances, and use of the
electron volt for discussions of energy per electron of per atom. There seems
no sign that crystallographers are ready to quote lattice spacings in
nanometers, and the 1071 conversion factor from A to meters is an easy
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one. UseoftheeV ratherthan 1.6 x 107!? J also simplifies many descriptions
of energy transformation events. Questions of units are of course important
for the numerical aspects of homewerk problems.

These problems are grouped at the end of each chapter, and there are
125 of them altogether. Many do include a numerical part, intended to
draw the stude'.i’s attention to the relative magnitudes of quantities and
influences more than to the importance of decimal place accuracy. The
problems vary (intentionally) greatly in length and difficulty; and I have
been told several times that some of these problems are too difficult for
the level of the text. These can certainly provide a worthwhile challenge
for one who has ‘“‘graduated” from the present book to one of the
advanced solid state texts cited in the General Reference list which follows
this preface.

As in previous editions of this book, many more literature citation
footnotes are given than are typical in an undergraduate text. These
augment the bibliography at the end of each chapter in citing specific
sources for optional additional reading. A paper so cited in a footnote may
serve as the beginning of a literature search undertaken years after the
owner’s first exposure to this book, and the footnotes have been provided
with this in mind. .

The present book was written to be an account of ideas about the
physics of solids rather than a compilation of facts and numbers. Accord-
ingly, tables of numerically determined properties are relatively few — in
contrast, for example, to nearly 60 tables of data in the fifth edition of
Kittel’s well-known textbook. The reader needing quantitative physical
data on solids has a variety of places to turn to, with extensive data in the
American Institute of Physics Handbook (last revised in 1972) and in the
Handbook of Chemistry and Physics (updated annually). As noted in the list
of General References on page ix, new volumes have recently been
appearing in the Landolt—Bérnstein Tables series, including data com-
pilation for some semiconductor materials. The work of consolidating
numerical information concerning solids is indeed a continuous one.

Over the vears of writing and rewriting material for successive
editions of this book, I have been helped by many people who have made
suggestions concerning the text, worked problems, and provided
illustration material. To all of those individually acknowledged in the
prefaces of the first and second editions, I am still grateful. In preparing
this updated second edition for Cambridge University Press, my principal
acknowledgement should go to L. E. Murr of the Oregon Graduate Center
for the photographs that provide a number of attractive and informative
new figures in Chapter 1, and to H. K. Henisch of Pennsylvania- State
University for the print used as Figure 1.2.

Beaverton, Oregon Jj. 8. BLAKEMORE

" March 1985
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chapter one

CRYSTALLINITY
AND THE
FORM OF SOLIDS

Solid materials can be classified according to a variety of criteria.
Among the more significant of these is the description of a solid as
being either crystalline or amorphous. The solid state physics commu-
nity has tended during the period from the mid-1940’s to the late 1960’s
to concentrate a much larger effort on crystalline solids than on the less
tractable amorphous ones.

An amorphous solid exhibits a considerable degree of short range
order in its nearest-neighbor bonds, but not the long range order of
a periodic atomic lattice; examples include randomly polymerized
plastics, carbon blacks, allotropic forms of elements such as selenium
and antimony, and glasses. A glass may alternatively be thought of as a
supercooled liquid in which the viscosity is too large to permit atomic
rearrangement towards a more ordered form. Since the degree of or-
dering of an amorphous solid depends so much on the conditions of its
preparation, it is perhaps not inappropriate to suggest that the prepara-
tion and study of amorphous solids has owed rather less to science and
rather more to art than the study of crystalline materials. Intense study
since the 1960s on glassy solids such as amorphous silicon (of interest for
its electronic properties) is likely to create a more nearly quantitative basis
for interpreting both electronic and structural features of noncrystalline
materials.

In the basic theory of the solid state, it is a common practice to start
with models of single crystals of complete perfection and infinite size.
The effects of impurities, defects, surfaces, and grain boundaries are
then added as perturbations. Such a procedure often works quite well
even when the solid under study has grains of microscopic or sub-
microscopic size, provided that long range order extends over distances
which are very large compared with the interatomic spacing. However,
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itis particularly convenient to carry out experimental measurements on
large single crystals when they are available, whether they are of natu-
ral origin or synthetically prepared.' Figures 1-1 and 1-2 show ex-
amples of microscopic and macroscopic synthetic crystals.

Large natural crystals of a variety of solids have been known to
man for thousands of years. Typical examples are quartz (Si0,), rocksalt
(NaCl), the sulphides of metals such as lead and zinc, and of course
gemstones such as ruby (ALO,) and diamond (C). Some of these natural
crystals exhibit a surprising degree of purity and crystalline perfection,
which has been matched in the laboratory only during the past few
vears.” For many centuries the word “crystal” was applied specifically
to quartz; it is based on the Greek word implying a form similar o that
of ice. In currentusage, a crystalline solid is one in which the atomic
arrangement is regularly repeated, and which is likely to exhibit an ex-
ternal morphology of planes making characteristic angles with each
other if the sample being studied happens to be a single crystal.

When two single crystals of the same solid are compared, it will
usually be found that the sizes of the characteristic plane “faces” are

' For discussions of single growth techniques, see the bibliography at the end of
Chapter 1.

2 Indeed, synthetically created diamonds still do not compare in quality with the
finest natural diamonds. For most other gemstones, man seems to have been able to do at
least as well as nature.

Figure 1-1  Scanning electron microscope view of small NiO crystal, with well
developed facets. (Photo courtesy of L.. E. Murr, Oregon Graduate Center.) At room
temperature, antiferromagnetic ordering provides for Ni0 a trigonal distortion of the
(basically rocksalt) atomic arrangement.
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Figure 1-2 'The growing surface of a calcium tartrate crystal, during growth in
a tartrate gel infused with calcium chloride solution. From Crystal Growth in Gels by
H. K. Henisch (Penn. State Univ. Press, 1970).

not in the same proportion (the “habit”™ varies from cerystal to erystal).
On the other hand the interfacial angles are always the same for erystals
of a given material; this was noted in the sixteenth century and formed
the basis of the crystallography of the next three centuries. These ob-
servations had to await the development of the atomic concept tor an
explanation, and it was not until Friedrich, Knipping, and Laue demon-
strated in 1912 that crystals could act as three-dimensional diffraction
gratings for X-rays that the concept of a regular and periodic atomic
arrangement received a sound experimental foundation. More recently,
the periodic arrangement of atoms has been made directly visible by
field-emission microscopy.?

Whether we wish to study mechanical, thermal, optical, electronic,
or magnetic properties of crystals —be they natural ones, synthetic
single crystals (such as Ge, Si, ALO,, KBr, Cu, Al), or polycrystalline
aggregates —most of the results obtained will be strongly influenced by
the periodic arrangement of atomic cores or by the accompanying peri-
odic electrostatic potential. The consequences of periodicity take up a
major fraction of this book, for a periodic potential has many con-
sequences, and exact or approximate solutions are possible in many sit-
uations.

In this first chapter we shall consider how atoms are bonded
together and how symmetry requirements result in the existence of a
limited variety of crystal classes. There is no optimum order for consid-
eration of the two topics of bonding and crystal symmetry, since each
depends on the other for illumination; it is recommended that the

3 See, for example, Figure 1-56(a) on page 79, for an ion-microscope view of atoms
at the surface of an iridium crystal.
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reader skim through the next two sections completely before em-
barking upon a detailed study of either.

The chapter continues (in Section 1.3) with an account of some of
the simpler lattices in which real solids crystallize. The emphasis of the
section is on the structures of elements and of the more familiar in-
organic binary compounds.

Sections 1.4 (Crystal Diffraction) and 1.5 (Reciprocal Space) are
closely connected, and once again it is recommended that both sections
be read through before a detailed study of either is undertaken. An un-
derstanding of the reciprocal lattice helps one to see what diffraction of
a wave in a crystal is all about, and vice versa.

Section 1.6 does little more than mention the principal types of
point and line imperfection in a crystal. Bibliographic sources are cited
for the reader who wishes to know more about dislocations, or about
the chemical thermodynamics of defect interactions in solids.



Forms of 1.1
Interatomic Binding

All of the mechanisms which cause bonding between atoms derive
from electrical attraction and repulsion. The differing strengths and dif-
fering types of bond are determined by the particular electronic struc-
tures of the atoms involved. The weak van der Waals (or residual) bond
provides a universal weak attraction between closely spaced atoms and
its influerice is overridden when the conditions necessary for ionic,
covalent, or metallic bonding are also present.

The existence of a stable bonding arrangement (whether between a
pair of otherwise isolated atoms, or throughout a large, three-dimen-
sional crystalline array) implies that the spatial configuration of poritive
ion cores and outer electrons has less total energy than any other con-
figuration (including infinite separation of the respective atoms). The
energy deficit of the configuration compared with isolated atoms is
known as the cohesive energy, and ranges in value from 0.1 eV/atom
for solids which can muster only the weak van der Waals bond to
7 eV/atom or more in some covalent and ionic compounds and some
metals.? The cohesive energy constitutes the reduction in potential
energy of the bonded system (compared with separate atoms) minus the
additional kinetic energy which the Heisenberg uncertainty principle
tells us must result from localization of the nuclei and outer shell elec-
trons.

In covalent bonding the angular placement of bonds is very impor-
tant, while in some other types of bonding a premium is placed upon
securing the largest possible coordination number (number of nearest
neighbors). Such factors are clearly important in controlling the most
favorable three-dimensional structure. For some solids, two or more
quite different structures would result in nearly the same energy, and a
change in temperature or hydrostatic pressure can then provoke a
change from one allotropic form of the solid to another, as envisaged in
Figure 1-3. As discussed further under the heading of the Covalent
Bond, an allotropi¢ transition to an energetically more favorable strue-
ture can sometimes be postponed, depending on the rate of conditions
of cooling or warming.

* The joule is a rather large energy unit for discussion of events involving a single
atom. Thus energies in this book will often be quoted in terms of electron volts per par-
ticle or per microscopic system. (It is hoped that the context will leave no doubt as to
whether an energy change in eV rz"2rs to a molecule, an atom, or a single electron.) One
elementary charge moved through a potential difference of one volt involves a potential
energy change of 1.6022 x 107" joule (see the table of useful constants inside the cover).
Chemists tend to cite bond energies and cohesive energies in calories per mole.
1 eV/molecule is equivalent to 23,000 calories per mole, or 9.65 X 10 joule/mole.
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/ Figure 1-3 Cohesive energy
Allotropic transition // versus temperature or pressure for a
solid in which two different atomic
arrangements are possible. An allo-
tropic transition may occur at the
pressure or temperature at which one
structure replaces the other as having
minimum energy.

Cohesive Energy

Structure |
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THE VAN DER WAALS BOND

As previously noted, van der Waals bonding occurs universally
between closely spaced atoms, but is important only when the condi-
tions for stronger bondinz mechanisms fail. It is a weak bond, with a
typical strength of 0.2 eV/atom, and occurs between neutral atoms and
between molecules. The name van der Waals is associated with this
form of bond since it was he who suggested that weak attractive forces
between molecules in a gas lead to an equation of state which repre-
sents the properties of real gases rather better than the ideal gas law
does. However, an explanation of this general attractive force had t()
await the theoretical attentions of London (1930).

London noted that a neutral atom has zero permanent electric
dipole moment, as do many molecules; yet such atoms and molecules
are attracted to others by electrical forces. He pointed out that the zero-
point motion, which is a consequence of the Heisenberg uncertainty
principle, gives any neutral atom a fluctuating dipole moment whose
amplitude and orientation vary rapidly. The field induced by a dipole
falls off as the cube of the distance. Thus if the nuclei of two atoms are
separated by a distance r, the instantaneous dipole of each atom creates
an instantaneous field proportional to (1/r)* at the other. The potential
energy of the coupling between the dipoles (which is attractive) is then

E;.[.,<:—(i) (1-1)

I.h

A quantum-mechanical calculation of the strength of this dipole-dipole
attraction suggests that E,, would reach 10 eV if r could be as small as
1A. However, a spacing this small is impossible because of overlap
repulsion.

As the interatomic distance decreases, the attractive tendency
begins to be offset by a repulsive mechanism when the electron clouds
of the atoms begin to overlap. This can be understood in terms of the
Pauli exclusion principle, that two or more electrons may not occupy
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the same quantum state. Thus overlap of electron clouds from two
atoms with quasi-closed-shell configurations is possible only by promo-
tion of some of the electrons to higher quantum states, which requires
more energy.

The variation of repulsive energy with interatomic spacing can be
simulated either by a power law expression (a dependence as strong as
r ' or r 2 being necessary) or in terms of a characteristic length. The
latter form is usually found to be the most satisfactory, and the total
energy can then be written as

E = —(%) + B exp(—%) ‘(1-2)

which is drawn as the solid curve in Figure 1-4. The strength of the
bond formed and the equilibrium distance r, between the atoms so
bonded depend on the magnitudes of the parameters A, B, and p. Since
the characteristic length p is small compared with the interatomic
spacing, the equilibrium arrangement of minimum E occurs with the
repulsive term making a rather small reduction in the binding energy?

We have spoken of van der Waals bonding so far as occurring
between a pair of otherwise isolated atoms. Within a three-dimensional
solid, the dipole-dipole attractive and overlap repulsive effects with
respect to the various neighbor atoms add to give an overall cohesive
energy still in accord with Equation 1-2. There are no restrictions on
bond angles, and solids bound by van der Waals forces tend to form in
the (close-packed) crystal structures for which an atom has the largest
possible number of nearest neighbors. (This is the case, for example, in
the crystals of the inert gases Ne, Ar, Kr, and Xe, all face-centered-cubic
structures, in which each atom has twelve nearest neighbors.) The
rapid decrease of van der Waals attraction with distance makes atoms
beyond the nearest neighbors of very little importance.

* See Problem 1.1 for an exercise of this principle.

|
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The solid inert gases® are fine examples of solids which are bound
solely by van der Waals forces, because the closed-shell configurations
of the atoms eliminate the possibility of other, stronger bonding mecha-
nisms. Far more typically do we find solids in which van der Waals
forces bind saturated molecules together, molecules within which
much stronger mechanisms are at work. This is the case with crystals of
many saturated organic compounds and also for solid H,, N, O,, F,, Cl,,
Br,, and I,. The example of Cl,, with a sublimation energy of 0.2
cV/molecule but a dissociatiore energy of 2.5 eV/molccule, shows how
the van der Waals bond between diatomic molecules can be broken
much more readily than the covalent Cl-Cl bond.

THE COVALENT BOND

The covalent bond, sometimes referred to as a valence or homo-
polar bond, is an electron-pair bond in which two atoms share two elec-
trons. The result of this sharing is that the electron charge density? is
high in the region between the two atoms. An atom is limited in the
number of covalent bonds it can make (depending on how much the
number of outer electrons differs from a closed-shell configuration), and
there is a marked directionality in the bonding. Thus carbon can be in-
volved in four bonds at tetrahedral angles (109.5°), and the character-
istic tetrahedral arrangement is seen in crystalline diamond and in
innumerable organic compounds. Other examples of characteristic
angles between adjacent covalent bonds are 105° in plastic sulphur and
102.6° in tellurium.

The hydrogen molecule, H,, serves as a simple example of the
covalert bond. Two isolated hydrogen atoms have separate 1s states for
their respective electrons. When they are brought together, the interac-
tion between the atoms splits the 1s state into two states of differing
energy, as sketched in Figure 1-5. When the two nuclei are very close
together, the total energy is increased for both kinds of states by inter-
nuclear electrostatic repulsion; but for the 1s state marked® o, which
has an even (symmetric) orbital wave-function, the energy is lowered
(i.e., there is an attractive tendency) for a moderate spacing.*

% For helium, the zero-point motion is so violent that solidification even at absolute
zero can be accomplished only by applying an external pressure of 30 atmospheres.

" Remember that in quantum mechanics we cannot describe a specific orbit for a
bound electron but only a wave-function ¢ whose square is proportional to the probabil-
ity of finding an electron at a location on a time-averaged basis. Then if  is a normalized
wave-function (such that ¢* integrated over all space is unity), the average charge density
at any location is the value of —ey?.

* The designation of the two orbital wave-functions as o, and o, comes from the
German terms “gerade” and “ungerade” for even and odd.

% A principal feature of the bonding attraction is the resonance energy corresponding
to the exchange of the two electrons between the two atomic orbitals, as first discussed by
W. Heitler and F. London, Z. Physik 44, 455 (1927). For a recent account of this in
English, see E. E. Anderson, Modern Physics and Quantum Mechanics (W. B. Saunders,
1971), p. 390.



