SENSATION & PERCEPTION

E. BRUCE GOLDSTEIN

SENSATION AND PERCEPTION

FOURTH EDITION

E. Bruce Goldstein

University of Pittsburgh

Brooks/Cole Publishing Company

 $\widehat{\mathbf{ITP}}^{\scriptscriptstyle\mathsf{TM}}$ An International Thomson Publishing Company

TO ESTHER S. GOLDSTEIN

AND
IN MEMORY OF
HAROLD T. GOLDSTEIN

(1911-1995)

ABOUT THE AUTHOR

E. Bruce Goldstein is Associate Professor of Psychology at the University of Pittsburgh. He received his bachelor's degree in chemical engineering from Tufts University, his Ph.D. in experimental psychology from Brown University, and was a post-doctoral fellow in the biology department at Harvard University. Bruce is the author of *Psychology* (also published by Brooks/Cole) and has published numerous papers on visual physiology and visual perception. He teaches sensation and perception, introductory psychology as a natural science, the psychology of gender, and the psychology of art.

PREFACE

My first research projects as a graduate student at Brown University asked the following questions about early events in the process of visual perception: How do visual pigments in the receptors react to light, and what is the nature of the electrical signals generated by these pigments? In my youthful enthusiasm I thought I would be able to understand perception by answering questions such as these about events in the receptors. I was not totally wrong, because the receptors do play a crucial role in the perceptual process. However, as I took my first graduate vision seminar with Lorrin Riggs, I soon realized that the perceptual process extends far beyond the receptors, stretching into the visual cortex and—as research was just beginning to suggest in the late 1960s—even into cortical areas beyond the visual cortex. I also became aware that perception cannot be understood by studying physiology alone. I learned that psychophysics—the study of the relationships between stimuli and perception—is central to our understanding of perception.

My appreciation for both the psychophysical and physiological underpinnings of perception has been reflected in each of the editions of *Sensation and Perception*, beginning with the first edition, which I began writing in 1977 and which was published in 1980. As I wrote the first edition and the revisions that followed, I have been motivated by a desire to tell both the psychophysical and physiological parts of the story of perception in a way that students will find interesting and easy to follow and which transmits the excitement I feel about this fascinating topic. As I have

pursued this goal in each edition I have made changes to update the story to reflect new developments in the field and to improve its telling to make it clearer and more accessible. In this, the fourth edition, I have made numerous changes in both content and presentation, while keeping the characteristics that so many people have appreciated in the previous editions. The following summarizes some of the features and changes in this edition of *Sensation and Perception*.

Telling the Story of Perception More Clearly

The story of perception is a fascinating one that includes one of the most profound questions posed by nature: "How are electrical signals processed and interpreted by the nervous system to create perceptions?" The story of the search for the answer to this question is a theme that runs through this book. This story begins with a completely rewritten Chapter 1, which introduces the basic principles behind the physiological, psychophysical, and cognitive approaches to perception. Those familiar with the third edition will notice that the psychophysical methods, which previously were described in an appendix at the end of the book, have been moved to a more prominent place in this opening chapter.

Chapters 2 and 3 have also been reorganized to create a more logical unfolding of the story as we follow the visual process from the receptors (Chapter 2) to the lateral geniculate nucleus and

cortex (Chapter 3). The first three chapters are designed to provide the basic tools that the student needs to understand the rest of the book. As the story of perception continues past these introductory chapters we consider the specific visual qualities of color, form, depth, and motion. The third edition's chapter on brightness and contrast has been eliminated to make space for new developments in perception. However, much of the material from this chapter has been moved to Chapters 2 and 4. The chapters on hearing have also been reorganized, moving the physiological story to the front, followed by psychophysics and then speech perception. The result is a clearer, more logical treatment of the sense of hearing.

This edition's organization has also been streamlined by eliminating the Boxes that appeared in the third edition. Although many readers appreciated the interesting material contained in the boxes, others felt that they broke up the flow of the text. My solution was to eliminate the boxes, but to integrate most of the previously boxed material into the text.

New Research and Expanded Coverage

One of the most rewarding aspects of preparing this revision was the opportunity it afforded to explore the new research in perception that has appeared in the seven years since I completed the third edition. There are far too many new additions to list them all here, but some examples are research on the binding problem in vision, parallel processing in the visual system, the newly proposed timing code for auditory localization, the phenomenon of duplex perception in speech perception, psychophysical channels for tactile perception, and new information on the role of genetics in determining taste experience. In addition, I have updated or expanded many topics, including neural coding, biologically based motion, the computational and spatial frequency approaches to visual perception, Fourier analysis

in hearing, auditory masking, and the perception of flavor.

Principles That Cut Across Senses

An important theme of this text is that although each of the senses has its own unique qualities, there are basic principles that cut across all of the senses. This idea of basic principles is mentioned a number of times in the text but is especially highlighted in a few places. The chapter on color vision (Chapter 4), ends with a table showing how principles introduced in Chapters 2 and 3, such as convergence, excitation and inhibition, columnar organization, and parallel pathways, apply to the processing of information for color perception. The chapter on auditory physiology (Chapter 8) ends with a section called "Comparing the Senses," which points out parallels between audition and vision. Finally, the chapters on the somatic senses (Chapter 11) and chemical senses (Chapter 12) draw numerous parallels with the other senses.

Demonstrations

The *Demonstrations*, a popular feature of previous editions, have been continued in this one. The purpose of these demonstrations is to provide perceptual experiences to illustrate some of the principles discussed in the text. The philosophy behind the demonstrations is to make them simple so that students will do them, and to integrate them into the flow of the text so that they become part of the ongoing story. This edition contains 52 demonstrations, a dozen of which are new.

The Medical Side of Perception

Although material on the treatment of medical problems connected with the senses has not traditionally been included in books such as this one, I decided to add material on clinical aspects of vision to the second edition because of my own curiosity about what was going on when I had my eyes examined. I have found that students think this material is as interesting as I do, and for this edition I have therefore expanded this chapter (Chapter 13) to include clinical aspects of hearing. It is particularly fitting that the book ends with a description of the cochlear implant operation, which was made possible by research on basic principles of auditory physiology described in Chapter 8.

The Illustration Program and Color Essays

The extensive illustration program for which this text is known has been continued in this edition. There are over 600 diagrams, anatomical drawings, graphs, and photographs, about a dozen more than the number in the third edition; however, over 200 of these illustrations are new to this edition! Old illustrations were pruned and new ones added to reflect advances in research since the last edition. In addition, I have taken a new approach to color illustrations. Rather than presenting a group of color plates that are referred to at various places in the text but seem unrelated to each other, I have written three short "color essays," which stand on their own but which also illustrate phenomena that are described elsewhere in the text.

Developmental Dimensions

Perhaps the most obvious change in this edition are two new end-of-chapter features, *Developmental Dimensions* and *Other Worlds of Perception*. The Developmental Dimension feature expands the treatment of perceptual development to include all of the senses by presenting material on perceptual development in a special section at

the end of each chapter. Each of the Developmental Dimensions can be considered separately along with the chapter to which it relates, or a number of them can be combined to create customized units on perceptual development (see Appendixes A and B).

Other Worlds of Perception

Other Worlds of Perception answers students' questions about what nonhuman animals perceive. However, the purpose of this feature goes beyond simply answering students' questions about what their dog or cat sees and hears. Its broader purpose is to introduce the idea that other species experience different perceptual realities than humans (such as the bat's perception of sonar pulses and the honeybee's perception of ultraviolet light) and that these different perceptual realities are interesting not only because they make us think about the nature of other animal's experiences, but also because they emphasize the fact that the nature of perceptual reality is determined by the functioning of an organism's sensory systems. Thus, Other Worlds of Perception reinforces one of the central themes of this book: Perceptual abilities can be traced to the way sensory systems are constructed. They also make the additional point that an animal's sensory systems are often adapted to fit the animal's needs and environment.

Other Learning Aids

Another new feature is the end-of-chapter *Review*, with a general outline of the chapter in the left column and questions related to this outline in the right column. The data behind this new approach, which combines what used to be separate sections titled "summary" and "study questions," is to provide a more meaningful and effective way to review the chapters. The outline provides a context for the study questions, which

xix Preface

the students can answer by returning to the keyed pages in the text. Another change is the placing of all of the definitions of bold-faced terms in a single glossary at the end of the book.

Help for the Instructor

Two teaching aids, available to instructors, are a set of transparencies of some of the text's illustrations and a test bank, which I have written. The test bank, which is available both as a book and, for the first time, in computerized form, includes over 600 questions, many of which I have "class tested" in my own classes.

Exploring Perception CD-ROM

Exploring Perception, a CD-ROM for Macintosh and IBM Windows is an exciting new ancillary available from Brooks/Cole. This interactive CD-ROM, which has been developed by Colin Ryan of James Cook University, North Queensland, Australia, gives students an opportunity to actively explore many of the concepts described in the text, including psychophysics, physiological principles, and perceiving color, form, motion, and depth. For further information about Exploring Perception, instructors can contact their local Brooks/Cole representative or inquire via email to info@brookscole.com.

A Message to the Student

Although most of this preface has been directed to instructors, I want to close by addressing a few words to the students who will be using this book. As you read this book you will see that it is a story about experiences that may initially seem simple, such as seeing a face or smelling a rose, but that turn out to be extremely complex. I hope that reading this book helps you appreciate both the complexity and the beauty of the mechanisms responsible for these experiences. I hope that as you gain an appreciation for the impressive advances that researchers have made toward understanding perception, you will also appreciate how much is still left to be discovered. But most important of all, I hope that reading this book will make you more aware of how perception affects you personally. After all, perception is something you experience all the time, and the study of perception can enhance this experience. I've found that studying perception has made me more observant of my environment, more aware of my perceptions, and more appreciative of the miraculous process that transforms energy falling on receptors into the richness of experience. I hope reading this book has the same effect on you. If you have questions, comments or other feedback about this book, I invite you to communicate with me via email at bruceg+@pitt.edu.

E. Bruce Goldstein

ACKNOWLEDGMENTS

Although I have been writing textbooks for almost two decades, I am still impressed by the extent to which creating a textbook is a group effort. Among those who have played indispensable roles in the creation of this book are Marianne Taflinger, my editor, who I thank for pushing me to finish it much sooner than I had planned and who provided valuable support in the form of reviews and the many behind-thescenes things that editors do unbeknownst to authors. I also thank her assistant Laura Donahue, who took care of obtaining reviews and handling my various queries in such an efficient and cheerful way.

My special thanks go to Kirk Bomont, my production editor, who once again has made the process of producing a book almost fun. I especially appreciate his amazing attention to detail and his commitment to high standards of both production values and pedagogy. I am also indebted to Ellen Brownstein who was kind enough to assign Kirk to my book.

I also wish to thank Lisa Torri who has again demonstrated grace under difficult conditions as director of the art program, Vernon Boes, for his support as head of the design department at Brooks/Cole, Cloyce Wall, who contributed elegant designs for the text and cover, and Lia Cook, who allowed me to use a photograph of one of her wonderful weavings for the cover illustration. In addition I thank two people who supported me during some difficult times during the writing of this book, Vicki Knight at Brooks/Cole, and especially my wife, Barbara, who has persevered with

love and understanding through numerous book projects.

I thank the following people who kindly provided new photographs for this edition: Linda Bartoshuk, Stephen Dear, David Hubel, Inglis Miller, Edward Morrison, Patricia Kuhl, David Knill, Maggie Shiffrar, Harvey Sussman, and Ian Witten. Finally, I thank the following reviewers and colleagues who provided such valuable feedback about the third edition and the manuscript for this edition.

Israel Abramov City University of New York, Brooklyn College

Richard A. Abrams
Washington University in St. Louis

Frank M. Bagrash
California State University, Fullerton

Suzanne Baker James Madison University

Lou Banderet Northeastern University, University College

Linda M. Bartoshuk Yale University School of Medicine

Bennett Bertenthal University of Virginia

Bruce Bridgeman University of California, Santa Cruz

Charles Collyer University of Rhode Island Cynthia Connine SUNY-Binghamton

Peter Eimas Brown University

Rhea Eskew Northeastern University

Marion Frank
University of Connecticut Health Center

George Gescheider Hamilton College

Kerry Green University of Arizona

Donald Greenfield Eye Institute of New Jersey

W. Lawrence Gulick University of Delaware

Kathleen Kowal
University of North Carolina at Wilmington

Thomas Mauger Ohio State University

Alan Musicant Middle Tennessee State University

Lynne Nygaard Indiana University

Catherine Palmer University of Pittsburgh

Theodore Parks University of California, Davis

Bob Patterson Washington State University

Mary A. Peterson University of Arizona Sheila R. Pratt University of Pittsburgh

Wayne Quirk Wayne State University

David Robbins
Ohio Wesleyan University

Helena Saldaña Indiana University

Pamela Sample University of California, San Diego

Alan Searleman St. Lawrence University

George A. Sharp Kutztown University

Mike Sloan
University of Alabama at Birmingham

Steven Specht Lebanon Valley College

Charles E. Sternheim University of Maryland

Harvey Sussman University of Texas

William Tedford Jr.
Southern Methodist University

Christopher Tyler Smith-Kettlewell Institute, San Francisco

Ronald Verrillo Syracuse University

Jeremy Wolfe Brigham & Woman's Hospital, Boston

Steven Yantis Johns Hopkins University

CONTENTS

Introduction to Perception
Perception Does Not Just "Happen" 2
The Physiological Approach to Perception 5 The Physiological Approach: Historical Background 5 Recording Electrical Signals in Neurons 7 Basic Properties of Nerve Impulses 9 Chemical and Electrical Events at the Synapse 10 The Brain and Perception 11
The Psychophysical Approach to Perception 15 Nineteenth-Century Psychophysics 16 Measuring Magnitude above Threshold 20 Identifying Perceptual Information in the Environment 23
The Cognitive Approach to Perception 24
The Approach in This Book 26
Other Worlds of Perception: What Do Other Species Experience? 30
Developmental Dimension: Infant Psychophysics 34
Review 37

4	- A	
	<i>7 A</i>	

Introduction to Vision: Receptors and Neural Processing

Overall Plan of the Visual System 42 Focusing the Incoming Light 44

The Retina 46
The Rod and Cone Receptors 46
Other Retinal Neurons 51

The Lateral Geniculate Nucleus 51

The Visual Cortex 52

Duplicity Theory and Perception 53

Dark Adaptation 54

Spectral Sensitivity 58

The Processing of Neural Signals 62
Introduction to Neural Circuits 63
Neural Processing in the Retina: Introduction
to Receptive Fields 65

Neural Processing and Perception 68
Neural Wiring and Sensitivity 68
Neural Wiring and Acuity 69
Perceiving Brightness and Darkness 70
Some Perceptual Phenomena in Search of
Physiological Explanations 77

The Beginnings of the Perceptual Process 78 Other Worlds of Perception: Animal Eyes 80 Developmental Dimension: Visual Acuity and the Newborn's Cones 84

Review 87

(4)

Introduction to Vision: Central Processing

Processing in the Lateral Geniculate Nucleus 91

Maps of the Retina in the LGN 92 The Magno and Parvo Layers of the LGN 93

Processing in the Striate Cortex 94

Receptive Fields of Neurons in the Striate

Cortex 94

The Organization of the Visual Cortex 97

The Relationship between Physiology and Perception 102

Processing Past the Striate Cortex 105
Organization of the Extrastriate
Pathways 105
Functions of Extrastriate Structures in
Monkeys 107
Extrastriate Structures and Pathways in
Humans 109

Some Challenges for Physiological Research 113

The Active Observer: The Physiology of Attention 113 Combining Parts and Qualities into Wholes: The Binding Problem 114

Other Worlds of Perception: Orientation Detectors in Insects 118 Developmental Dimension: Sensitive Periods in Perceptual Development 120 Review 125

(1)

PERCEIVING COLOR

Functions of Color Vision 129 Perceptual Segregation 129 Signaling 130

Describing Color Experience 130

Color and Wavelength 133

The Search for the Sensory Code 136 Specificity Coding 136 Across-Fiber Pattern Coding 137

Psychophysical Research on Color Vision 138
Trichromatic Theory: Color Matching 139
Opponent-Process Theory: Phenomenological
Observations 140

Physiological Research on Color Vision 142
Trichromatic Theory: Receptors and
Pigments 142
Opponent-Process Theory: Neural
Responding 144

Color Deficiency 150

Monochromatism 151

Dichromatism 151

Physiological Mechanisms 152

Perceptual Constancy 153 *Lightness Constancy* 153 *Color Constancy* 157

Some Perceptual Principles 160

Other Worlds of Perception: Color Experience in Animals 163

Developmental Dimension: Infant Color Vision 167 Review 170

47

PERCEIVING OBJECTS

The Problem of Object Perception 175

Problems for Computer Vision 176

Perceiving Degraded or Ambiguous

Images 178

Asking Questions about Object

Perception 178

Perceptual Organization: The Gestalt
Approach 180

The Beginnings of Gestalt Psychology 180
The Laws of Perceptual Organization 183
Figure–Ground Segregation 187
Current Reactions to the Gestalt
Approach 190

Perception as a Constructive Process: The Constructivist Approach 195

Perceiving Objects in Stages: Preattentive and Focused Processing 198

Determining the Primitives 198

Combining the Primitives 201

Top-Down and Bottom-Up Processing 202

Three-Dimensional Shape Recognition: Recognition-by-Components Theory 203

The Computational Approach to Object Perception 205

The Spatial Frequency Approach to Object Perception 208

Detection of Spatial Frequencies by the Visual System 208 Fourier Analysis and Fourier Synthesis 214 Putting It All Together: Multiple Questions and Multiple Approaches 217

Other Worlds of Perception: Contrast Sensitivity in Cats and in Human Infants 219

Developmental Dimension: Textons and Infant Perception 223

Review 225

(1)

PERCEIVING DEPTH AND SIZE

The Cue Approach 231
Oculomotor Cues 232
Convergence and Accommodation 233

Pictorial Cues 233

Overlap 233

Size in the Field of View 234

Height in the Field of View 235

Atmospheric Perspective 235

Familiar Size 236

Linear Perspective 237

Texture Gradient 238

Movement-Produced Cues 238 Motion Parallax 239 Deletion and Accretion 240

Binocular Disparity and Stereopsis 240
Two Eyes: Two Viewpoints 240
Corresponding Retinal Points 243
Random-Dot Stereogram 246
Disparity Information in the Brain 247
The Correspondence Problem 248
The Autostereogram 249

Perceiving Size 253

Perceiving Size as Visual Angle Changes 255

Size Constancy and Depth Perception 255 Can We Perceive an Object's Visual Angle? 258

Illusions of Size 259
The Ames Room 260
The Moon Illusion 261
The Muller-Lyer and Ponzo Illusions 263

The Ecological Approach 266
Invariant Information in the
Environment 267
The Ambient Optic Array: An Alternative to
the Retinal Image 270
Direct Perception: An Alternative to
Processing 271

Other Worlds of Perception: The Depth Information Used by Animals 274

Developmental Dimension: The Emergence of Depth Perception in Infants 277 Review 282

PERCEIVING MOVEMENT

The Information Provided by Movement 287 Studying Movement Perception 289

Movement Detectors 294

Directionally Selective Neurons in the Striate

Cortex 294

Directionally Selective Neurons in the MT

Cortex 297

Taking Eye Movements into Account 300

The Aperture Problem 303

The Ambiguity of Movement behind an

Aperture 303

Determining the Direction of Movement from Ambiguous Information 304 Neural Responding to Components and Patterns of Movement 306

Perceiving Biological Motion 307

Perceiving People Walking 307

Apparent Movement of the Human Body 308

The Correspondence Problem 310

Correspondence by Point-by-Point

Comparison 311

Correspondence by Applying Heuristics 312

Movement as a Source of Information 314

Creating Structure from Motion 314

Vision and Balance 317

Moving through the Environment 318

Other Worlds of Perception: The Cat's Perception of Biological Motion 323

Developmental Dimension: Infants' Perception of Movement 326

Review 329

Audition I: Auditory Physiology

The Functions of Hearing 335

The Stimulus for Hearing 337

Pure Tones 338

Perceptual Dimensions of Sound 340

Complex Sounds and Fourier Analysis 340

Structure and Functioning of the Auditory System 343

The Outer Ear 344
The Middle Ear 344

The Inner Ear 346
The Auditory Pathways 349

The Code for Frequency 350

The Place Code 351

The Timing Code 354

Place and Timing Information in the Central

Auditory System 356

The Physiology of Sound Localization 358
Why Two Ears Are Better Than One: Binaural
Cues 358
Neurons That Respond to Interaural Time
Difference 359
Neurons That Respond to Particular Locations
in Space 360

Comparing the Senses: Audition and Vision 362

Similarities between Audition and Vision 362

Other Worlds of Perception: Echolocation by Bats 365

Developmental Dimension: Plasticity of Frequency Representation in the Cochlea and the Brain 368

Review 371

(4)

AUDITION II: HEARING

Sensitivity and Loudness 376

The Audibility Curve 377

Loudness, Intensity, and Frequency 378

Equal Loudness Curves 379

Clinical Aspects of Loudness 379

Physiological Aspects of Loudness 380

Perceiving Pitch 381

Pitch and Frequency 381

Tone Height and Tone Chroma 382 Periodicity Pitch (the Effect of the Missing Fundamental) 383

Sound Quality 385 Timbre 385 Reverberation Time 388 The Precedence Effect 389

Psychophysical Aspects of Auditory
Processing 390
Masking 390
Psychophysical Tuning Curves 392
The Critical Band for Loudness 393

Auditory Scene Analysis 395 Auditory Perceptual Organization 396

Auditory Localization 400
Interaural Time Difference 401
Interaural Intensity Difference 402
Sound Reflections by the Pinna 402
Sound as Information for the Visually
Impaired 403

The Psychophysical Approach to Hearing 406

Other Worlds of Perception: The Auditory World of Animals 407

Developmental Dimension: The Auditory World of Human Infants 411

Review 414

Speech Perception

The Speech Stimulus 418

The Phoneme: Sounds and Meaning 418

Phonetic Features: The Production of

Speech 418

The Acoustic Signal and Acoustic Cues 421

The Challenge of Understanding Speech Perception 421 The Variability Problem 422

The Segmentation Problem 425

Is There a Special Mechanism for Speech Perception? 426

The Motor Theory of Speech Perception 426 Categorical Perception 427 The McGurk Effect 430 Duplex Perception 431

Is There Information in the Acoustic Signal That Indicates Which Sounds Are Present? 432

How Do Listeners Take Variations in Speakers' Voices into Account? 436

How Do Knowledge and Meaning Influence Speech Perception? 438

Segmentation and Meaning 438 Semantics, Syntax, and Speech Perception 439 The Phonemic Restoration Effect 440

The Physiology of Speech Perception 441
Selective Adaptation and Feature
Detectors 441
Neural Responses to Speech and Complex
Sounds 443
Lateralization of Function 444

Speech Perception: Complex Phenomena—General Theories 444

Other Worlds of Perception: Perception of "Calls" by Monkeys 446

Developmental Dimension: Infant Speech Perception 450

Review 454

D

THE SOMATIC SENSES

Anatomy of the Somatosensory System 460
The Skin and Its Receptors 460
Central Structures 462

The Psychophysics and Physiology of Tactile Perception 463

Psychophysical Channels for Tactile
Perception 463
Neural Channels for Tactile Perception 464
Mechanoreceptive Fibers and Tactile
Perception 467

Neural Responses to Temperature and Potentially Damaging Stimuli 469 Thermoreceptors: Temperature 469 Nociceptors: Pain 470

Neural Processing 471

Measuring Tactile Acuity: The Two-Point

Threshold 471

Receptive Fields on the Skin 471

Maps of the Body on the Cortex: The

Magnification Factor 472

Receptive Fields 475

Active Touch 476

The Physiological Approach to Active
Touch 476

The Psychophysical Approach to Active
Touch 478

Central Influences on Pain Perception 482

Culture, Experience, and Pain Perception 483

Gate Control Theory 484

Endorphins 486

Other Worlds of Perception: "Other Worlds" of Perception in Humans 488 Developmental Dimension: Organization of the Somatosensory Cortex 491

Review 493

D

THE CHEMICAL SENSES

The Uses of Olfaction 500

Some Facts about Human Olfaction 501

Fact #1: Although Humans Are Less Sensitive
to Odors Than Other Animals, Our
Olfactory Receptors Are Exquisitely
Sensitive 501

Fact #2: Humans Are Surprisingly Good at

Detecting Differences in Odor
Intensity 501

Fact #3: The Olfactory System Is Excellent at Identifying Odors 502

Fact #4: Human Olfaction Has the Potential to Provide Information about Other People 503

Structure of the Olfactory System 504

The Odor Stimulus and Odor Quality 504 Odor Qualities and Physical Properties 505

The Neural Code for Odor Quality 509

Coding at the Level of the Receptors 510

Coding in the Olfactory Bulb and Beyond 512

The Perception of Flavor 513

Factors Influencing Food Preferences 515

Internal State of the Organism 516

Past Experiences with Food 516

Conditioned Flavor Aversion 517

Specific Hungers 517

The Genetics of Taste Experience 518

The Taste System 519
The Tongue and Transduction 519
Central Destinations of Taste Signals 521

Taste Quality 522

The Neural Code for Taste Quality 522

Across-Fiber Pattern Coding 523

Specificity Coding 524

Other Worlds of Perception: Similarities in Chemical Sensing across Species 527

Developmental Dimension: Olfaction and Taste in Infants 530

Review 533

CLINICAL ASPECTS OF VISION AND HEARING

VISUAL IMPAIRMENT

How Can Vision Become Impaired? 540

Focusing Problems 541

Myopia 541

Hyperopia 544

Presbyopia 545

Astigmatism 545

Decreased Transmission of Light 546
What Is Blindness? 546
Corneal Disease and Injury 546
Clouding of the Lens (Cataract) 547

Damage to the Retina 548

Diabetic Retinopathy 549

Macular Degeneration 550

Detached Retina 551

Hereditary Retinal Degeneration 552