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Series foreword

Advancing Weather and Climate Science

Meteorology is a rapidly moving science. New developments in weather fore-
casting, climate science and observing techniques are happening all the time, as
shown by the wealth of papers published in the various meteorological journals.
Often these developments take many years to make it into academic textbooks,
by which time the science itself has moved on. At the same time, the underpin-
ning principles of atmospheric science are well understood but could be brought
up to date in the light of the ever increasing volume of new and exciting obser-
vations and the underlying patterns of climate change that may affect so many
aspects of weather and the climate system.

In this series, the Royal Meteorological Society, in conjunction with Wiley-
Blackwell, is aiming to bring together both the underpinning principles and new
developments in the science into a unified set of books suitable for undergraduate
and postgraduate study as well as being a useful resource for the professional
meteorologist or Earth system scientist. New developments in weather and climate
sciences will be described together with a comprehensive survey of the underpin-
ning principles, thoroughly updated for the 21st century. The series will build into a
comprehensive teaching resource for the growing number of courses in weather and
climate science at undergraduate and postgraduate level.

Series Editors

Peter Inness
University of Reading, UK

John A. Knox
University of Georgia, USA






Preface

We have developed this book from lectures given by us and others in the Department
of Meteorology at the University of Reading. Since 1965, this department has been
an important centre for the study of meteorology and atmospheric science. Indeed,
for many years, it was the only independent department of meteorology in the
United Kingdom able to offer a full range of undergraduate and postgraduate teach-
ing in meteorology. Many scientists and meteorologists have spent time at Reading
either as students or researchers. So our book is a record of one facet of the teaching
they met at Reading, and it aspires to encapsulate something of the spirit of the
Reading department.

During the early part of the twentieth century, meteorology made the transition
from a largely descriptive, qualitative science to a firmly quantitative science. At the
heart of that transition was the recognition that the structure and development of
weather systems were essentially problems in fluid dynamics. In the 1920s, the
scientists of the Bergen School recognized this but lacked the mathematical tools to
link their descriptive models of cyclone development in terms of air masses and
fronts to the basic equations of fluid dynamics. In the 1940s, modern dynamical
meteorology was born out of the recognition by Eady, Charney and others that
cyclone development could be viewed as a problem in fluid dynamical instability.

Even so, great simplifications proved necessary to render the problem tractable.
Amongst these simplifications was the linearization of the governing equations. The
highly nonlinear equations governing fluid dynamics were reduced to relatively simple
linear forms whose solutions can be written in terms of traditional analytic functions.
Even so, these simplified equations could only be solved for very simple idealized
circumstances. For example, the work of both Charney and Eady was confined to flows
which varied linearly in the vertical but had no variation in other directions. There was
still a big gap between theory and observation. The development of the digital computer
in the 1950s opened up the possibility of bridging this gap. While their nonlinearity and
complexity rendered the governing equations resistant to analytical solution, the digital
computer could generate numerous particular solutions to discretized analogues to the
governing equations. So two separate branches of dynamical meteorology developed.
On one hand, the drive for weather forecasts and, increasingly, for climate modelling
led to the development of elaborate numerical models of atmospheric flow. As computer
power increased, these models became more realistic, with higher resolution and fewer
approximations or simplifications to the governing equations, and with more elaborate
representation of the processes driving atmospheric motion such as radiative transfer,
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cloud processes and friction. On the other hand, more sophisticated mathematical
techniques drove the development of analytical theory either to better approximations
to the governing equations or to explore more complex physical scenarios. As a
result, there was a growing gulf between numerical modelling, theoretical meteorology
and observation.

Our approach at Reading, both in terms of teaching and research, started with the
intention of bridging this gulf. The word ‘model’” had become somewhat limited in
its use in meteorology: it tended to refer to the large and elaborate numerical weather
prediction and global circulation models that were primary tools in many applica-
tions of meteorology. But the word has far wider meaning than that. A model is any
abstraction of the real world, any representation in which certain complexities are
eradicated or idealized. All of meteorology, indeed, all of science, deals in models.
They may be very basic, starting with conceptual verbal or picture models such as
the Norwegian frontal model of cyclone development. They may be exceedingly
complex and include a plethora of different processes. The coupled atmosphere—
ocean global circulation models now used to study climate change exemplify this
sort of model. But between these extremes lie a hierarchy of models of differing
degrees of complexity. These range from highly idealized analytic models, models
with only very few degrees of freedom, through models of intermediate complexity,
right up to fully elaborated numerical models. Good science involves the interaction
between these different levels of model and with observations, finding out which
elements of the observed world are captured or lost by the different levels of model
complexity.

A very complex model may give a faithful representation of the observed atmos-
phere, but of itself it can lead to rather limited understanding. A very simple model
is transparent in its working but generally gives but a crude imitation of a complex
reality. Intermediate models, grounded in constant reference to observations and
to other models in the hierarchy, can illuminate the transition from transparent
simplicity to elaborate complexity.

Our book focuses on the simpler and intermediate complexity models in this
hierarchy. Although we shall refer to the results of calculations using elaborate
numerical models, we have not set out to describe such models. That is a major
topic, bringing together dynamical meteorology and numerical analysis, and
deserves a textbook of its own. However, we shall make use of results from numerical
models in a number of places.

Our textbook is based upon various lecture courses that we have given to students,
both postgraduate and advanced undergraduate, in the Department of Meteorology,
University of Reading, over many years. Many of our postgraduate students came to
Reading with a first degree in other quantitative disciplines, so our teaching assumed
no prior acquaintance with fluid dynamics and the mathematical techniques used in
that discipline. Neither did we assume any prior knowledge of meteorology or atmos-
pheric science. We did assume basic knowledge of vector calculus and differential
equations. However, in order to make this book self-contained, we have included an
appendix which gives a brief introduction to the essential elements of vector calculus
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assumed in the main body of the text. So our intended readership is primarily
postgraduate and advanced undergraduate students of meteorology. We hope others,
particularly quantitative scientists who wish to become better acquainted with
dynamical meteorology, will also find our book interesting.

Our text begins with an opening chapter which gives a broad brush survey of the
structure of the atmosphere and the character of atmospheric flow, particularly in
the midlatitude troposphere. This opening chapter introduces in a qualitative way a
number of concepts which will be elaborated in subsequent chapters.

Then follows our first major theme: a basic introduction to classic fluid dynamics
as applied to the Earth’s atmosphere. After deriving the fundamental equations in
Chapter 2, we introduce the various modifications that are needed for this application.
Foremost among these are the roles that the rotation of the Earth and its spherical
geometry, and the stable stratification of the atmosphere play. Perhaps the most impor-
tant chapter in our first theme is Chapter 5, which develops the technique of scale
analysis and applies it systematically to flows in the atmosphere. Our focus of interest
is upon the synoptic scale weather systems of the midlatitudes, but the discussion
points to how other situations might be approached.

Our second theme recognizes that atmospheric flow on the larger scales is dominated
by rotation. The Earth rotates on its axis and individual fluid elements spin as they
move around. Such spin is a primary property of the atmosphere or ocean, and our
insight into atmospheric behaviour is developed by rewriting the equations in terms of
spin or ‘vorticity’. Equations describing the processes which generate and modify
vorticity result, and we spend some time exploring these equations in simple contexts.
These simple examples help to develop a language and a set of conceptual principles
to explore more elaborate and more realistic examples. A powerful unifying concept
is a quantity called ‘potential vorticity’, which is introduced in Chapter 10.

Our third theme makes up the remainder of our book. That theme is the dynamical
understanding of middle latitude weather systems exploiting the near balance
between certain terms in the governing equations. Such a balance links together
dynamical, pressure and temperature fields and constrains their evolution.
Maintaining a near-balanced state determines the response of the atmosphere to
thermal and other forcing. With these concepts, we are able to discuss the evolution
of weather systems as problems in fluid dynamical instability, and we are able to
extend our discussion to more elaborate, nonlinear regimes. Frontal formation is
revealed as an integral part of cyclone development, and at the same time, developing
weather systems play a central part in determining the larger scale flow in which
they are embedded. Through the concept of balance, potential vorticity is revealed
as a primary concept in modern dynamical meteorology.

This book is intended as a readable textbook rather than a research monograph.
We hope that the material is largely self-contained. Consequently, we have made no
attempt to provide a comprehensive and exhaustive bibliography. Rather we have
included some suggestions for further reading which will give the interested reader
a starting point from which to explore the literature. Modern electronic databases
and citation indices make such exploration much easier than it has been in the past.
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Both authors would like to acknowledge with thanks the influence of those
supervising their early research. Francis Bretherton introduced one of us (BH) to
geophysical fluid dynamics, and in particular the importance and role of potential
vorticity. Raymond Hide..... Discussions with many colleagues outside Reading,
such as Michael Mclntyre, have also been very important to us.

Our book aims to sum up an important component of the teaching and thinking
of the Reading Department of Meteorology in its first 50 years. We owe a debt of
gratitude to its staff and students over many years. In some cases, they have made
very specific contributions. The authors have worked closely with some of them on
research that has now become part of this book. A number of colleagues have gener-
ously allowed us access to their own lecture notes and material. In other cases, the
influence of students and colleagues has been more diffuse and pervasive: Reading
has provided a stimulating and energizing place to study atmospheric dynamics
throughout our careers. We remember with gratitude the many conversations with
colleagues and the questions from students that have helped to mould our thinking.
It is nigh on impossible to name all these individuals and any such list would inevi-
tably have omissions. So we hope colleagues and students, past and present, will
accept this general thanks for all they have given us. However, some specific thanks
are in order. The comments provided by John Methven on a first draft of much of
the book were extremely valuable to us. We have had the help of a number of mem-
bers of the department in providing us with data and generating diagrams from
them. In particular, we wish to thank Laura Baker, Paul Berrisford, Johannes de
Leeuw and Andrew Lomas for supplying data and pictures. We are particularly
grateful to Ben Harvey for his work in extracting data and developing many plots
specially designed for this book, and to Robert Lee who has done a most profes-
sional job making some of our crude sketches into publication-quality diagrams.

But above all, thanks to our research colleagues and students over many years. Their
interest and enthusiasm has been a continuing stimulus to us both.
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Chapters 2-8: Many text books on fluid mechanics and dynamical meteorology
give complementary or more extended cover of the material in these chapters.
The texts by Holton (1992), Vallis (2006) and Martin (2006) are particularly
recommended. Ambaum (2010) is a text on atmospheric thermodynamics.

Chapter 9: For the calculations underlying Figure 9.5 to Figure 9.7, see James
(1980).

Chapter 10: Rossby (1940) introduced the concept of potential vorticity. For a
review of the literature for potential vorticity, see Hoskins et al. (1985). Thorpe
(1985) gives more detail on invertibility.

Chapter 11: The sketches of Figure 11.1 are based on some of the beautiful
photographs in Van Dyke (1982). Vallis (2006) gives a fuller account of two- and
three-dimensional turbulences in a geophysical context.

Chapter 12: Charney (1948) laid the foundations of the quasi-geostrophic
approximation.

Chapter 13: Hoskins et al. (1978) discussed different forms of the w-equation
and introduced the Q vector. See Machenauer (1977), Section 13.5, for more details
on initialization.

Chapter 14: The papers of Charney (1947) and Eady (1949) are the much cited
beginnings of this subject. Charney and Stern (1962) set out the general conditions
for baroclinic instability, and the unifying boundary condition was introduced by
Bretherton (1966). Simmons and Hoskins (1977) described unstable baroclinic
normal modes growing on realistic midlatitude zonal jets. Farrell (1982) is a good
source for the initial value problem. See also Badger and Hoskins (2001) for simple
initial value problems and mechanisms for baroclinic growth. Simmons and Hoskins
(1979) described the up- and downstream development of baroclinic waves.

Chapter 15: Hoskins (1982) reviews the mathematical theory of frontogenesis.
See Eliassen (1962) for a derivation of the Sawyer—Eliassen equation for frontal
circulations and Hoskins (1977) for more on frontal transformation discussed in
Section 15.3. The semi-geostrophic Eady model was presented in Hoskins and
Bretherton (1972).

Chapter 16: The formation of fronts in developing baroclinc waves was discussed
by Hoskins (1976). Nonlinear baroclinic lifecycle calculations were presented by
Simmons and Hoskins (1978). Thorncroft et al. (1993) discussed the LC1 and LC2
lifecycles. Edmon et al. (1980) derived Eliassen—Palm sections for baroclinic lifecycle
calculation as well as for the observed midlatitude troposphere.
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Chapter 17: A fuller review of the use of isentropic maps of potential vorticity is
given by Hoskins et al. (1985). Hoskins (1997) introduced the alternative map of 6
on potential vorticity surfaces. Masato et al. (2012) discussed blocking in terms of
Rossby wave breaking. See Stoelinga (1996) for a case study of the role of heating
and friction in the potential vorticity of a developing weather system.

Chapter 18: Charney and Drazin (1961) is the seminal reference for Rossby
wave propagation from the troposphere into the stratosphere. Edmon et al. (1980)
discuss the Eliassen—Palm flux and its relationship to group velocity. Karoly and
Hoskins (1982) demonstrate the three-dimensional propagation of Rossby waves.
Dritschel and MclIntyre (2008) review recent work on potential vorticity staircases.
Zhu and Nakamura discuss Rossby wave propagation for multiple potential vorticity
steps, and hence the transition to the uniform potential vorticity gradient case.
Rhines (1975) discussed the role of the Rhines number in geostrophic turbulence.
Williams (1978) is the first in a series of papers in which he demonstrated the
circumstances needed to generate multiple jets in a range of planetary atmospheres.
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