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PREFACE

This work is intended as a sequel to the author’s Linear Programming,
and it concentrates on a study of the theory and computational aspects of
nonlinear programming problems. The first chapter surveys in simple
terms those features of nonlinear programming problems which make
them much more difficult to solve than linear ones. Chapter 2 attempts to
summarize the most important mathematical background needed and
introduces the notation to be used throughout the text. By the inclusion
of this chapter it is hoped that the current work can be used independently
of the author’s Linear Programming or Linear Algebra text. Chapter 3
concentrates on classical optimization methods based on the calculus,
mainly the method of Lagrange multipliers. [t also develops the most
important properties of convex and concave functions that will be needed
in the remainder of the text. No attempt is made to study the calculus of
variations in this chapter since an entire book would be required to de-
velop this subject adequately. Indeed, the only ceferences to the calculus
of variations which appear in this text are brief sections in the chapters
on dynamic programming. Chapter 4 discusses approximate methods for
finding either a local or global optimum (depending on the nature of the
problem) for nonlinear programming problems. Chapter 5 is devoted to
stochastic programming problems and Chapter 6 to the Kuhn-Tucker
theory. In Chapter 7 quadratic programming problems are studied and
in Chapter 8 integer linear programming is discussed. Chapter 9 is con-
cerned with gradient methods for solving programming problems, and the
remaining two chapters deal with dynamiec programming.

The subject matter of nonlinear programming is much broader and much
more difficult to unify than is that concerned only with linear programming.
For this reason, the current text may appear to be somewhat lacking in
cohesiveness and may seem to be concerned with a set of somewhat, un-
related special methods for solving particular types of problems. This is
true to a considerable extent, because there does not at present exist any
unifying theory for all of what might be considered nonlinear programming
and because, in addition, computational algorithms exist only for solving
very special types of problems. The development of these algorithms de-
pends in a crucial way on the special characteristics of the problems. A
very large number of computational schemes have been suggested for
solving a variety of the problems considered here. It was out of the
question to discuss every method that has been proposed for solving a
particular type of problem, and hence the author was forced to make a
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vi PREFACE

“choice in selecting the ones to be discussed. In many cases, this had to be
done on an arbitrary basis, because no data exist for comparing the
computational efficiency of various schemes. In some cases, a method
may have been omitted simply because the author was not aware of its
existence. The field of nonlinear programming is currently in a state of
rapid change. In selecting material for this text, an attempt was made
to include those methods which would be more or less of lasting relevance.
However, it is quite possible that many of the computational algorithms
discussed will be superseded by improved ones in the not too distant future.

" 'The mathematical background needed for a study of this work varies
considerably from chapter to chapter. For most of the chapters a rudi-
mentary knowledge of linear algebra and linear programming is needed
(say, roughly, the first eight or nine chapters of the author’s Linear Pro-
grammzng). However, a large part of the material on dynamic program-
ming could be read without a knowledge of either linear algebra or linear
programming. Some knowledge of calculus is needed in Chapters 3 and 6,
but not elsewhere to any significant extent. Chapter 2 attempts to sum-
marize most of the necessary mathematical background referred to above.
There remains one background area which Chapter 2 does not attempt to
summarizé. This is the subject matter of elementary probability theory.
Discussions involving the use of probability theory appear in Chapters 3,
5, 10, and 11.

The author is indebted once again to Jackson E. Morris, who has so
generously supplied the excellent quotations appearing at the beginning
of each chapter. The reviewers, Robert Dorfman and Stuart Dreyfus,
provided a number of useful suggestions for which the author is grateful.
The Graduate School of Business, University of Chicago, generously pro-
vided the secretarial assistance for having the manuscript typed and re-
produced.

Bogotd, Colombia G.H.
June 1964
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CHAPTER 1
INTRODUCTION

Each venture
Is a new beginning, a raid on the inarticulate
With shabby equipment always detertorating.

T. S. Eliot, East Coker

1-1 Programming problems. Any problem which seeks to maximize or
minimize a numerical function of one or more variables (or functions)
when the variables (or functions) can be independent or related in some
way through the specification of certain constraints may be referred to as
an optimization problem. Optimization problems have long been of in-
terest to mathematicians, physical scientists, and engineers. The possibility
of using the methods of the differential calculus and the calculus of varia-
tions to solve certain types of optimization problems arising in geometry
and physics has been known and applied since the middle of the eighteenth
century. In the last fifteen years there has been a remarkable growth of
interest in a new class of optimization problems, often referred to as pro-
gramming problems, which are usually not amenable to solution by the
classical methods of the calculus. Programming problems can frequently
be classified in a broad context as problems in economics, rather than
problems in geometry or physics as were the classical optimization problems.
Often a programming problem can be considered to be one concerned with
the allocation of scarce resources—men, machines, and raw materials—
to the manufacture of one or more produets in such a way that the products
meet certain specifications, while at the same time some objective func-
tion such as profit or cost is maximized or minimized. Programming
problems have attracted such wide interest because they do not occur in
theoretical economics only, but also arise, in the form of important prac-
tical problems, in industry, commerce, government, and the military.

The general programming problem can be formulated as follows. It is
desired to determine values for n variables z;, . .., z, which satisfy the
m inequalities or equations

gi(xl; sevy xn){S, = Z}bii 1= 1) cee,m, (1—1)

and, in addition, maximize or minimize the function

2 =11, ..., Ta) | (1-2)
1



2 INTRODUCTION , [cuap. 1

The restrictions (1-1) are called the constraints, and (1-2) is called the
objective function. In (1-1) the gi(xy, . .., z») are assumed to be specified
functions, and the b; are assumed to be known constants. Furthermore,
in (1-1), one and only one of the signs <, =, > holds for each constraint,
but the sign may vary from one constraint to another. The values of m
and n need not be related in any way, that is, m can be greater than, less
than, or equal to n. We shall allow m to be zero, so that we include cases
where there are no constraints (1-1). Usually, some or all of the variables
are restricted to be non-negative. In addition, it may be required that
some or all of the variables are allowed to take on only certain discrete
values, such as integral values. Unless otherwise specified, (1-1) and (1-2)
will be interpreted as a problem in which it is desired to find numerical
values for the n variables z;, ..., 2, which optimize (1-2) subject to
(1-1) and any non-negativity and/or integrality requirements. In certain
cases, however, the variables z; will be functions of one or more parameters,
and the problem will then be one of determining a set of functions
Z1, ..., T, which optimize (1-2) subject to (1-1) and any non-negativity
and/or integrality requirements on the z;.

The real impetus for the growth of interest in and the practical applica-
tions of programming problems came in 1947, when George Dantzig
devised the simplex algorithm for solving the general linear programming
problem. If in (1-1) and (1-2),

gilTy, . - ., Tn) = E aix;, i=1,...,m, (1-3)
=1
and
. n
f@1 .., 2a) = D, e, (1-4)
i=1

where the a;; and ¢; are known constants, the programming problem is
said to be linear provided that there are no other restrictions except
perhaps the requirement that some or all variables must be non-negative.
Usually, in the formulation of the general linear programming problem,
it is specified that each variable must be non-negative, i.e.,

z; > 0, i=1...,n, (1-5)

gince this form is most convenient when making numerical computations.
Any problem in which some of the variables are unrestricted in sign may
easily be transformed to one in which all variables are non-negative.
Thus a linear programming problem seeks to determine non-negative
values of the n variables z; which satisfy the m constraints

¥ ami{<, =, 2}b;



1-2] SPECIAL CASES OF INTEREST 3

and which maximize or minimize the linear function z = 3} ;c;z;. We
ghall not consider a problem of the above form to be linear unless all z;
values which satisfy the constraints and the non-negativity restrictions
are allowable, i.e., it is not permissible to impose an additional restriction,
for example, that the variables can only assume integral values. All
programming problems that are not linear in the sense defined above will
be called nonlinear.

In this text we shall be concerned almost exclusively with the solution
of nonlinear programming problems. It will be assumed that the reader is
familiar with linear programming to the extent covered in the first nine
chapters of the author's Linear Programming [13).* This is an essential
prerequisite, since many of the techniques’ for the solution of nonlinear
problems involve in one way or another the use of a simplex-type algo-
rithm. Unfortunately, nonlinear programming problems are almost always
much more difficult to solve than linear ones. Indeed, computational pro-
cedures have been devised for solving only a very small subset of all
nonlinear programming problems. We shall study those that can be
solved and the techniques available for solving them. No attempt will be
made to study in detail the great variety of practical problems that can be
formulated as nonlinear programming problems. It might be noted, how-
ever, that most practical problems which have been formulated as linear
programming problems are in reality nonlinear ones for which the non-
linearities were ignored or approximated in some way. Although no atterapt
will be made to cover formally the applications of nonlinear programming
to practical situations, a number of practical applications will be con-
sidered in the discussion of examples and in the problems.

1-2 Special cases of interest. Most of the following chapters will either
be concerned with a study of techniques for solving very specialized types
of nonlinear programming problems, or will be devoted to examining the
types of nonlinear programming problems that can.be solved with some
particular computational technique. It seems desirable at the outset to
review briefly the special types of nonlinear programming problems that
will receive the greatest attention, and the general types of computational
techniques that have been found useful in solving such problems. This
section will deal with the special types of problems to be considered in
detail later, and the next section will be concerned with computational
techniques. In the discussion to follow it will be assumed that the variables
are not restricted to integral or, more generally, discrete values unless it is
indicated specifically that they are so restricted.

* Numbers in brackets refer to bibliographical references.



4 INTRODUCTION [cHAP. 1

The class of nonlinear programming problems which has been studied
most extensively is that where the constraints are linear and the objective
function is nonlinear. The general problem of this kind can be written in
the abbreviated format

Ea,-,-:c,- {S, =, Z}bi: 1= 1,...,m, (1—6)
i=1 '

z; 20 j=1,...,n _ (1-7
max ormin z = f(z1,..., Z,)- (1-8)

Equations (1-6) through (1-8) should be read: Find non-negative values
of the n variables z; which satisfy the constraints (1-6) and which maxi-
mize or minimize the objective function z = f(zy,...,x,). For con-
venience, the variables were required to be non-negative in the above
formulation. Problems in which some or all variables are allowed to be
unrestricted in sign may be easily reduced to this case by a simple trans-
formation that will be introduced later.

Even when attention is restricted to problems involving linear con-
straints, computational techniques for finding optimal solutions have not
been devised except in cases where the objective function has very special
properties. There are two special cases of (1-6) through (1-8) that will
be of particular inferest to us. In the first, the objective function can be
written as a sum of n functions, each of which is a function of only a single
variable, ie.,

z=f(z1,...,2,) = f1(x1) + f2(x2) + -+ - 4 fulza). (1-9)

To guarantee that an optimal solution can be found, additional restric-
tions must be placed on the f;(z;). These will be discussed later. When the
objective function can be written in the form (1-9), it is said to be separable.
Occasionally, when studying problems with separable objective functions
and a very small number of linear constraints, we shall also consider cases
where the variables are restricted to taking on only integral values.

In the second case, the objective function can be written as the sum of
a linear form plus a quadratic form, so that

z= f(il, ceeyZn) = i cigi + Y, Y, dijziz
i=1

iml i1
= 11 + ++ - + nTp + d112} + diazi2y + - -0+ dinTita
S R A (1-10)

Such a nonlinear programming problem is referred to as a quadratic pro-
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gramming problem. To be certain that an optimal solution can be found
in this case, the d;; must satisfy certain restrictions which need not be
considered now. An entire chapter, Chapter 7, will be devoted to studying
the theory of, and techniques for, solving quadratic programming problems.

For a variety of reasons that will become clear later, problems with
nonlinear constraints tend to be much more difficult to solve than those
with linear constraints. We shall devote parts of several chapters to study-
ing problems in which the constraints may be nonlinear. Most of our
attention will be limited, however, to cases in which the constraints are

separable. This means that the g:(z;, ..., z,) in (1-1) must be capable
of being written

gi(T1, . .o, Tn) = ga1(@1) + -+ - -+ GinlTn)- (1-11)

To ensure that we can obtain an optimal solution to problems with non-
linear constraints of the form (1-11), very stringent restrictions must be
placed both on the g;;(z;) and on the objective function. Although it is
profitable to study the special case of a nonseparable objective function
which is the sum of a linear and a quadratic form, this is not true in the
corresponding case for nonseparable constraints, and we shall not attempt
to do so.

There is one other class of problems which may have nonlinear con-
straints that we shall spend some time studying. Problems in this class
are referred to as classical optimization problems. To obtain the form of
this kind of problem, let us return to the general nonlinear programming
problem (1-1) and (1-2) and imagine that (1) no inequalities appear in
the constraints, (2) there are no non-negativity or discreteness restrictions
on the variables, (3) m < n, and (4) the functions g.(z;, ..., z,) and
f(xy, ...,x,) are continuous and possess partial derivatives at least
through second order. Such a programming problem can be represented as

gi(mly vy xn).z bi; 1= ,...,m, (1_12)
max or min 2 = f(xy, ..., Ty).
A problem of this kind will be called a classical optimization problem.
Problems such as (1-12) can be solved, at least in principle, by means of
the classical optimization techniques based on the calculus. While there
are problems (1-12) which can actually be solved numerically in this
manner, one usually encounters computational difficulties of such a magni-
tude that it becomes mandatory to attempt some other method of solution.
Indeed, we shall not even classify the classical techniques as computational
devices, but instead as theoretical tools. It is important, however, to
have some familiarity with the classical techniques, because in many areas
they form the basis for the theoretical analyses employed. IFor example,
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much of the standard theory of production and consumer behavior.in
economics is based on classical optimization methods. Our main reason,
then, for studying problems of the form (1-12) as a special class will
be to develop the theory of classical optimization methods rather than to
develop numerical procedures for solving problems of this type. Classical
optimization techniques will be studied in Chapter 3.

The classical techniques can be generalized to handle cases in which the
variables are required to be non-negative and the constraints may be
inequalities, but again these generalizations are primarily of theoretical
value and do not usually constitute computational procedures. Nonethe-~
less, we shall see that these theoretical results will be very useful. In one
particular case, that of quadratic programming, they will indirectly pro-
vide a computational method, i.e., they will provide another problem
(which can be solved by the methods to be considered in the next section)
whose solution yields an optimal solution to the quadratic programming
problem. Chapter 6 will be devoted to a study of these theoretical generali-
zations of classical optimization techniques.

Another class of nonlinear programming problems that will be of
interest to us is obtained from the general linear programming problem by
imposing the additional requirement that the variables can take on only
integral values. Such problems are frequently referred to as integer linear
programming problems. They can be represented mathematically as

Eaiﬂ:j{ﬁ,=,2}b;, t=1...,m,
=1
z; 20, j=1,...,n; some or all z; integers,  (1-13)

n
max or min 2 = Z c;;.
i=1

If all z; are required to be integers, the problem is called an all integer
problem. Otherwise, we shall refer to it as a mixed integer-continuous
variable problem. Chapter 8 will be concerned entirely with developing
means for solving integer linear programming problems and showing that
a wide variety of interesting problems can be formulated in this manner.

One other special type of nonlinear programming problem will be studied
in some detail. This will be a type of stochastic sequential decision problem
which is frequently encountered in production planning and inventory
control. We shall not attempt to provide its mathematical form now. It
will, however, exemplify the case where the variables z; are functions of
other parameters so that, instead of determining a set of numerical values
for the z;, one must determine a set of functions.

This completes the summary of the special types of problems that will
occupy most of our attention in the remainder of this work. Other kinds of
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programming problems will be considered, but they will not be discussed
as extensively as the special classes of problems considered in this section.
We must restrict ourselves in large measure to special classes of problems,
because the computational procedures for finding optimal solutions rely
heavily-on the special features and structures of the problems.

'1-3 Computational procedures. The simplex algorithm for solving the
general linear programming problem is an iterative procedure which yields
an exact optimal solution in a finite number of steps. For the nonlinear
programming problems to be studied in this text, we shall not always be
able to devise computational procedures which yield exactly an optimal
solution in a finite number of steps. One must often settle for procedures
which provide only an approximate optimal solution or which may require
an infinite number of steps for convergence.

One of the most powerful techniques for solving nonlinear programming
problems is to transform the problem by some means into a form which
permits application of the simplex algorithm (or one of the simplex-type
algorithms). Thus the simplex algorithm turns out to be one of the most
powerful computational devices for solving nonlinear programming prob-
lems as well as for solving linear programming problems. The nature of the
“transformation” required to change a nonlinear programming problem
into a form permitting the use of the simplex method varies widely with
the type of problem being studied. In certain cases no approximations
are needed to obtain a problem to which the simplex method can be applied,
whereas in others approximations must be made. However, these ap-
proximations may be made as accurate as one desires (at the expense of
increased computational effort).

Another useful computational technique for solving certain types of

_nonlinear programming problems is dynamic programming. The title of
this text might suggest that dynamic programming refers to a special
class of programming problems that are in some way distinct from non-
linear ones. Indeed there is some justification in this assumption, since
the term dynamic programming is often used to refer to programming
problems where changes occur over time and hence time must be considered
explicitly. We shall not use dynamic programming in this sense. Instead,
we shall take dynamic programming to mean the computational method
involving recurrence relations which has been developed te.a considerable
extent by Richard Bellman. This technique evolved as a result of studying
programming problems in which changes over time were important, and
this is why it was given the name “dynamic programming.” However, the
technique can be applied to problems in which time is in no way relevant.
Hence a dlfferent name would be desirable, but the term “dynamic pro-

gramming’ ’ has now become so firmly established that change would prove
difficult.
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It should be pointed out that we are using the term “dynamic pro-
gramming” in a rather narrow sense, although one will frequently find
it used to describe a special type of computational procedure. The analysis
of a very broad class of functional equations is also often considered to be
a part of dynamic programming, in which case the procedure becomes an
analytical as well as a computational tool. Indeed, we shall even discuss
briefly the analysis of certain functional equations in our’ discussion of
dynamic programming, so that we are not treating it as a strictly computa-
tional technique. Basically, however, we shall consider the term to refer
to a special kind of computational procedure.

The final computational algorithm which will be used is referred to as
the gradient method. Like the simplex method, it is an iterative technique
in which we move at each step from one feasible solution to another in
such a way that the value of the objective function is improved. It differs
from the simplex method in that it is not an adjacent extreme point
technique. In general, gradient methods may require an infinite number of
iterations for convergence.

1-4 Difficulties introduced by nonlinearities. Before entering into a
detailed discussion of any particular class of nonlinear programming
problems, we shall examine some of the characteristics of nonlinear
phenomena that can make it much more difficult to solve nonlinear pro-
gramming problems than it is to solve linear ones. Recall that linear pro-
gramming problems have the following properties:

(a) The set of feasible solutions [i.e., the set of all n-tuples [z, . . ., zn]
which satisfy the constraints (1-6) and the non-negativity restrictions
(1-7)] is a convex set. This convex set has a finite number of corners
which are usually referred to as extreme points.

(b) The set of all n-tuples [zy, . . ., z,] which yield a specified value of
the objective function is a hyperplane. Furthermore, the hyperplanes
corresponding to different values of the objective function are parallel.

(¢) Alocal maximum or minimum is also the absolute (global) maximum
or minimum of the objective function over the set of feasible solutions,
i.e., there do not exist local optima of the objective function different from
the global optimum. A feasible solution yields the absolute maximum of
the objective function if the value of z for this feasible solution is at least
as great as that for any other feasible solution, whereas, roughly speaking,
a feasible solution yields a local maximum of the objective function if the
value of z for this feasible solution is greater than the value of z for nearby
feasible solutions.

(d) If the optimal value of the objective function is bounded, at least
one of the extreme points of the convex set of feasible solutions will be an
optimal solution. Furthermore, starting at any extreme point of the con-



