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PREFACE

Science has moved and will increasingly move toward the molecular echelon. From biol-
ogy and medicine to materials—and even the very French specialty, gastronomy!—many
disciplines are claiming the “molecular” label. It features an understanding of events on
a molecular level and the ability to control them through design and synthesis. The latter
are thus keys to the future of many fields.

As practitioners of the field, we believe that tremendous opportunities are being
created through the ability to design and synthesize novel functional tools—catalysts,
devices from probes to batteries, photovoltaics, diagnostic and therapeutic agents,
etc.—involving hybrid materials, made of ever more complex organic, organometallic
and inorganic molecules linked to active nano-scaled supports (nanoparticles, clusters,
polymers and biopolymers, etc.). In other words, molecular architectures certainly stand
at the crossroad of most of the major present fields of research, provided their synthetic
requirements are adapted to those of objects outside their traditional boundaries.

We define an organic hybrid as a material made by linking polymeric, carbon-
rich or inorganic material to organics (small molecules or macromolecules). Our aim
is to provide readers—organic synthetic chemists interested in applying their skills
to function-oriented synthesis, non-organic chemists wishing to introduce molecular
complexity to their field, students trying to make sense of objects that span over several
fields of the curriculum—with a general overview of the diversity of solutions that
organic, inorganic, and polymer synthetic chemists, chemical biologists, and materials
scientists have come up with to control functions through the covalent attachment of
specific supports to endlessly variable molecular architectures.

Each new material has specific requirements (availability, stability, surface function-
ality, etc.) that limit the options available for chemists to graft the desired function-laden
molecules. It is also a challenge to determine whether a determined bonding between
the entities has been achieved. This in turns generates new questions and opportunities
for research and applications. Thus, this book emphasizes two main topics: synthesis
and characterization.

The science of hybrids is growing at a galloping speed, so it is impossible, frustrating
and in the end futile to pretend to be exhaustive. Rather, we have selected a few key items
across the hybrids’ family to illustrate the concept and approaches that can be replicated
for other classes of supports. This is also why we have minimized the illustration of
the properties of the materials as this is depicted in scores of reviews, generally at the
expense of the presentation of the nuts and bolts of the synthesis, which the present
book seeks to redress. We however explain what property(ies) the molecular template
introduces or modifies as this drives the design of the functionalization itself and the
methods used to achieve the goal.

vii



viii PREFACE

In a nutshell, the authors have answered in the most concise way possible the
following questions: Why and how to do it? And how to prove that you did it? That is,
after a brief introduction on why go for a strategy involving hybrids—how this affects
properties, or generates new ones—two issues are addressed, namely (i) what are the
synthetic strategies and reactions required and (ii) how can one tell the reactions worked?
Are there specific analytical techniques to support the claims? It is very interesting and
enriching to see how each of them has interpreted these very simple constraints!

We have subdivided the book into 13 chapters, by classes of supports grouped in
small clusters. The first cluster of chapters focuses on carbon-based materials, illustrat-
ing three different and complementary angles. Cécilia Ménard-Moyon has illustrated
the functionalization of carbon nanotubes; Iban Azcarate, David Lachkar, Emmanuel
Lacdte, Jennifer Lesage de la Haye, and Anne-Laure Vallet focused on the chemistry
of graphenes; Maria Gunawan, Didier Poinsot, Bruno Domenichini, Peter Schreiner,
Andrey Fokin, and Jean-Cyrille Hierso on the contrary focused on the chemistry of the
very compact nanodiamonds.

After this carbon-rich foray, the second cluster deals with inorganic materials. In
the first two chapters of this part, the functionalizations of titania (Laurence Rozes,
Loic D’ Arras, Chloé Hoffman, Frangois Potier, Niki Halttunen, and Lionel Nicole) and
zirconia (Marc Petit and Julien Monot) are a perfect illustration of the different options a
single change in chemical composition of the support can bring. The two other chapters
are devoted to large surface area materials with two different perspectives: Flavien
Morel, Xiaoying Xu, Marco Ranocchiari, and Jeroen van Bokhoven examine the highly
porous MOFs, while Richard Brutchey, Zeger Hens, and Maksym Kovalenko discuss
semiconducting nanoparticles.

The third cluster is devoted to three classes of biopolymers, with a representa-
tive example of each main natural building block. Michel Arthur and Mélanie Etheve-
Quelquejeu show the challenges of nucleic acids modification; Divya Agrawal and Chris-
tian Hackenberger those of modified protein synthesis; and Maxime Guitet, Mickaél
Ménand, and Matthieu Sollogoub those of the selective transformation of cyclodextrins.

The final cluster examines polymers: how one can selectively functionalize artificial
polymers (Anja Goldmann, Mathias Glassner, Andrew Inglis, and Christopher Barner-
Kowollik), as well as how one can couple artificial polymers with biopolymers (Paul
Wilson, Julien Nicolas, and David Haddleton). Finally, Anne-Marie Caminade, Béatrice
Delavaux-Nicot, and Jean-Pierre Majoral present the specific reactivity challenges of
dendrimers, which are from two worlds, macromolecules and molecules ... hybrids
within hybrids.

We thank all the authors for their contribution and we hope the reader will enjoy
the various and varied contributions as much as we did.

Bernadette Charleux
Christophe Copéret
Emmanuel Lacote
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COVALENT ORGANIC
FUNCTIONALIZATION AND
CHARACTERIZATION OF
CARBON NANOTUBES

Cécilia Ménard-Moyon

Laboratoire d’Immunopathologie et Chimie Thérapeutique,
CNRS — Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France

1.1 INTRODUCTION

More than 20 years ago, lijima reported the structural morphology of carbon nanotubes
(CNTs) by use of high-resolution transmission electron microscopy (HRTEM) and elec-
tron diffraction [1]. A CNT can be defined as a graphene sheet rolled up to form a cylinder
(Fig. 1.1a). CNTs can be classified into different types: single-wall CNTs (SWCNTs),
double-wall CNTs (DWCNTs), and multi-wall CNTs (MWCNTs) depending on the
number of layers. SWCNTSs have diameters ranging from 0.7 to 2 nm and lengths up to
several micrometers, while MWCNTSs have diameters from a few to tens of nanometers
and lengths up to a few micrometers. Hence, the structure of CNTs is characterized by a
high aspect ratio (i.e., ratio between length and diameter). Approximately two-thirds of
as-produced SWCNTs are semiconducting, whereas one-third is metallic. CNTs contain
defects in their structure, such as vacancies, and five- or seven-membered rings that
induce curvature, as illustrated in the transmission electron microscopy (TEM) image
in Figure 1.1b.

The breadth and range of research involving CNTs has expanded greatly over the
past years. Indeed, CNTs possess unique electronic, mechanical, and thermal properties

Chemistry of Organo-Hybrids: Synthesis and Characterization of Functional Nano-Objects, First Edition.
Edited by Bernadette Charleux, Christophe Copéret, and Emmanuel Lacéte.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.



2 COVALENT ORGANIC FUNCTIONALIZATION AND CHARACTERIZATION OF CNTs

(a) (b)

Figure 1.1. Schematic representation of a SWCNT (a) and TEM image of MWCNTs (b).

that can be exploited for potential applications in a variety of fields from materials
science [2], molecular electronics [3], photovoltaic devices [4] to nanomedicine [5].
However, CNTs have poor solubility in all solvents due to strong intermolecular cohe-
sive forces among the nanotubes that form bundles, thus hampering full exploitation of
their properties and presenting obstacles to their practical applications. Therefore, func-
tionalization is required for manipulating and processing CNTs by inducing exfoliation,
increasing dispersibility, and giving the possibility to associate molecules with specific
properties to nanotubes.

Functionalization can be classified into two categories: covalent and noncovalent
derivatization, the latter relying on hydrophobic, ©—r, and/or electrostatic interactions
[6-8]. Covalent functionalization can be achieved by oxidation of defect sites of CNTs
and subsequent derivatization of the generated carboxylic acid groups. Other methods
are based on halogenation, cycloaddition reactions, or direct additions of highly reactive
species on the nanotube sidewall. Grafting functional groups on the nanotube surface in
a covalent manner allows to obtain stable conjugates with desired properties by tailoring
the physicochemical properties of the CNTs. Depending on the level of functionaliza-
tion, the electrical conductivity of the CNTs can be significantly altered. It is of high
importance to rigorously characterize functionalized CNTs. For this purpose, differ-
ent spectroscopic, microscopic, and thermal techniques can be used for morphological,
structural, and elemental analysis of functionalized CNTs.

This chapter is focused on covalent methodologies for nanotube functionalization.
Section 1.2 is dedicated to the different chemical strategies used for covalent function-
alization of CNTs, while Section 1.3 describes the analytical techniques for characteri-
zation of functionalized CNTs. Finally, Section 1.4 contains some concluding remarks.

1.2 COVALENT FUNCTIONALIZATION OF CARBON
NANOTUBES WITH ORGANIC MOLECULES

1.2.1 Defect-Site Chemistry

Among various surface functionalization techniques, amidation or esterification of oxi-
dized CNTs is probably the most extensively used to prepare soluble materials either in
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organic solvents or in water and for linking a wide range of molecules [9]. Generally, oxi-
dation of CNTs is performed by treatment with strong acids such as nitric acid [10, 11],
sulfuric/nitric acid mixture [10], or with other strong oxidizing agents (H,SO,/KMnO,
[12] or OsOy4 [13]). The oxidative treatment, in particular when assisted by sonication,
usually induces shortening of the CNTs [10], but also frequently causes nanotube dam-
age, limiting their use as mechanical and electrical reinforcements. Among treatments
using strong acids, low-power sonication of MWCNTs in nitric acid followed by treat-
ment with hydrogen peroxide was found to minimize nanotube damage [14]. Many
research groups have studied the chemical nature of the oxygenated moieties (e.g., car-
boxylic acids, carbonyls, hydroxyls) [15] introduced on the nanotube surface by different
techniques such as infrared (IR) spectroscopy [16] and thermogravimetry [15]. Oxidized
CNTs are mainly decorated with carboxylic groups, as suggested by the pioneering work
of the group of Smalley who derivatized the carboxyl functions with thiolalkylamines
by amidation [10]. The CNTs bearing thiol moieties were labeled with gold nanoparti-
cles and visualized by atomic force microscopy (AFM). Gold nanoparticles were found
mainly at the nanotube ends. By using scanning tunneling microscopy (STM), Prato and
coworkers visualized alkyl chains introduced by amidation of carboxylic acid functions,
confirming that oxidation of CNTs occurs mainly at the nanotube tips [17].

Oxidized CNTs have been widely used as precursors for further covalent deriva-
tization via amidation or esterification reactions, with amine or alcohol derivatives,
respectively (Fig. 1.2). The carboxylic acid functions have to be pre-activated via the
formation of acyl chlorides using oxalyl or thionyl chloride, followed by the addition
of the appropriate amine or alcohol. Alternatively, the amidation can be performed
by using the carbodiimide coupling chemistry. In this case, the carboxyl groups are

Oxidation
—_—
(a)
R-OH | R—=NH,
+ +
(COCI), or SOCI, |(©) (®) | (cocly, or SOCI,
or coupling agents or coupling agents

Figure 1.2. Oxidation of CNTs (a) and, amidation (b) and esterification of oxidized CNTs
(c). For clarity, a SWCNT segment is shown with only a single added functional group.



4 COVALENT ORGANIC FUNCTIONALIZATION AND CHARACTERIZATION OF CNTs

treated with N-hydroxy succinimide (NHS) or 1-hydroxybenzotriazole (HOBt) in the
presence of a carbodiimide, usually N,N-dicyclohexylcarbodiimide (DCC) or 1-ethyl-
3-(3-dimethylaminopropyl) carbodiimide (EDC). The corresponding esters are then
displaced by amine or hydroxyl functions to form the amide or ester bonds, respectively.

A range of molecules with various properties have been linked on the CNTs by this
method, including several organic molecules [18, 19], chromophores with optoelectronic
properties [20], bioactive molecules [21-23], or polymers [24,25]. To provide evidence
of the ester bond formation in soluble CNTs functionalized with lipophilic or hydrophilic
chains, defunctionalization was performed by acid- or base-catalyzed hydrolysis, leading
to recovery of the starting insoluble CNTs [26]. In another study, esterification between
oxygenated functions at the tips of single oxidized SWCNTSs has been exploited to form
rings of nanotubes with a narrow size distribution according to AFM [27].

1.2.2 Halogenation

1.2.2.1 Fluorination. Fluorination has been one of the first chemical methods
developed to functionalize CNTs [28]. Most strategies involve elemental fluorine at
high temperatures (up to 600°C) (Fig. 1.3a) [29-33]. The best temperature conditions
are between 150°C and 400°C. The highest degree of functionalization was found to be
one fluorine atom for every two carbon atoms according to elemental analysis [34].

Alternative conditions implying CF, plasma treatment have also been developed
[35,36]. Due to rehybridation of a high number of sp? carbon atoms to sp>, the resulting
fluoronanotubes are insulating.

Fluorination drastically enhances the reactivity of the nanotube sidewalls. There-
fore, derivatization of fluoronanotubes by nucleophilic substitution reactions is possible
(Figs. 1.3b—1.3d) [37]. Indeed, a variety of nucleophilic reagents has been used such as
alkyl magnesium bromides (Grignard reagents) [38] and alkyllithium derivatives [39].
Fluoronanotubes have also been reacted with several amines [40], diamines [41], diols
[42], or amino alcohols [42].

1.2.2.2 Bromination. A few methods for bromination of CNTs have been
recently reported using various conditions. DWCNTs have been brominated by ele-
mental bromine using microwaves, leading to a mild alteration of the m-conjugated
sidewall of the nanotubes according to Raman spectroscopy (5-8 wt% of Br) (Fig. 1.4a)
[43]. Alternatively, bromination of DWCNTs using Br, vapor at room temperature
results in 5-6 at% bromine concentration [44]. Plasma using gaseous bromine has been
applied for the functionalization of SWCNTSs. The treatment is very efficient as one
bromine atom per two carbon atoms is introduced on the nanotube surface in these
conditions [45]. The bromo-functionalized nanotubes have been further derivatized by
nucleophilic substitution with amine derivatives. Elemental bromine in the presence of
a Lewis acid or dibenzoylperoxide as radical initiator allows to functionalize MWCNTSs
with 10-22 at% Br [46]. As alternative, SWCNTs have been brominated via a mild
reaction using N-bromosuccinimide (NBS) (Fig. 1.4b) [47]. NBS readily decomposes
into bromine and succinimide radicals with the help of light, heat, and ultrasound. The



