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Préface

Hydrodynamics is the science which deals with the
motion of liquid in the macroscopic sense. It is essentially
a field which is regarded as applied mathematics because it
deals with the mathematical treatments of basic equations
for a fluid continuum obtained on a purely Newtonian
basis. It is also the foundation of hydraulics, which, as an
art, has to compromise with the rigorous mathematical
treatments because of nonlinear effects, inherent instability,
turbulence, and the complexity of ‘“boundary conditions”,
encountered in engineering practice. Therefore, this book
can be considered as the text for a course in basic hydro-
dynamics, as well as for a course in the fundamentals of
hydraulic and related engineering disciplines.

In the first case, the students learn how to make use of
their mathematical knowledge in a field of physics particu-
larly suitable to mathematical treatments. Since they may
have some difficulty in representing a physical phenomenon
by a mathematical model, a great emphasis has been given
to the physical concepts of hydrodynamics. For students
with an undergraduate training in engineering, the diffi-
culty may be a lack of appropriate mathematical tools.
Their first contact with hydraulics has been on an essen-
tially practical basis. They may be discouraged in attempt-.
ing the study of such books as Hydrodynamics, by Lamb,
which remains the bible of hydrodynamicists. Hence,
mathematical intricacies have been introduced slowly and
progressively. Also, the emphasis on the physical approach
has made it possible to avoid mathematical abstractions so
that a concrete support may be given to equations.

Finally, the author has tried to make this book self-
contained in the sense that a practicing engineer who wants
to improve his theoretical background can study hydro-
dynamics by himself without attending lectures. Too often
articles in scientific journals present some discouraging
aspects to practicing engineers and the most valuable
messages can only reach a few specialists. It is felt that the
learning of some basic theories will help hydraulic engi-
neers to keep abreast of and participate in new develop-
ments proposed by theorists.

Considering that a good assimilation of the basis is
essential before further study, great care has been taken to
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develop a clear understanding, both mathematically and
physically, of the fundamental concepts of theoretical hy-
draulics. The introduction of mathematical simplifications
and assumptions, often based on physical considera-
tions, has also been developed by examples: The mathe-
matical difficulties have been cleared up by introducing
them progressively and by developing all the intermediate
calculations. Also, all the abstract concepts of theoretical
hydraulics have been explained as copcretely as possible by
use of examples. It will appear that the first chapter is the
easiest to understand, and it is assumed that the mathe-
matical background increases as the student progresses
toward the end of the book. However, it is taken for granted
that the student already has some notion of elementary
hydraulics.

Finally, the succession of the various chapters have been
chosen in order to build up a structure as logical and as
deductive as possible in order to avoid that the various
subjects appear as a succession of different mathematical
recipes rather than as a unique and logical subject.

Part One deals with the establishment of the fundamental
differential equations governing the flow motion in all
possible cases. The possible approximations are also

indicated. Part Two deals with general methogs of integra- -

tions and the mathematical treatments of these equations.
Integrations of general interest, and integrations in some
typical particular cases are presented. Part Three is devoted
to water wave theories, as one of the most important topics

- of hydrodynamics.

It is pointed out that the emphasis of the book is on water
waves. Therefore the treatment of motion of compressible
fluids has been judged beyond the scope of this book, with
a few exceptions. Also, almost all the calculations are
presented in a Cartesian (or cylindrical) system of coordi-
nates. Vectorial and tensorial oper~tions have been mini-
mized in order to reduce the necessary mathematical
background. However, vectorial and tensorial notations
are slowly introduced for sake of recognition in the
literature. :

It is hoped that this book will entice students gifted in
mathematics to apply their capabilities to the study of fluid

motion and dynamical oceanography. It is hoped also that
it will instill in engineering students the desire for further
study in hydrodynamics and mathematics. It is also hoped

‘that the book will be of great help to students in hydraulics,

civil and coastal engineering, naval architecture, as well as
in physical oceanography, marine geology, and sedimentol-
ogy, who want to learn or revise one of the theoretical
aspect of their future profession.
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Chapter 1

Basic Concepts-

and Principles

1-1 Basic Concepts of Hydrodynamics

1-1.1 Definition of an Elementary
Particle of Fluid

Studies of theoretical fluid mechanics are based on the
concept of an elementary mass or particle of fluid. This
particle has no well-defined existence. It may be considered
as a corpus ulienum, a foreign body in the mechanics of a
continuum. It is an aid toward the understanding of the
physical meaning of the differential equations governing
the flow motion.

Just as the fundamental concepts of the theoretical
mechanics of solid matter are based on the mechanics of a
so-called “material point,” the basis of theoretical fluid
mechanics rests on the mechanics of an elementary mass -

" of fluid. Such an elementary mass of fluid, in common with

the material point in the kinematics of a solid body, is
assumed to be either infinitely small or small enough that
all parts of the element can be considered, to have the same
velocity of translation V and the same density p. This
elementary fluid particle is assumed to be homogeneous,
isotropic, and continuous in the macroscopic sense. The
molecular pattern and the molecular and Brownian motions
within the particle, a ‘subject dealt with in the kinetic theory
of fluids, are not taken into account.

1-1.2 Theoretical Approach

The laws of mechanics of a solid body system (a rotating
disk, for example) are obtained by the integration of the
laws of mechanics for a “material point” with respect to the
area or the volume of the system under consideration.
Similarly, the laws of fluid mechanics used in engineering
practice are obtained by integration—exact or approximate
—of the laws governing the behavior of a fluid particle
along a line or throughout an area or a volume. Hence,
studies in hydrodynamics may be divided into two different
parts.

1-1.2.1 The first part consists of establishing the general
differential equations which govern the motion of an
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elementary particle of fluid. The fluid may be assumed either
perfect (without friction forces) or real. In the latter case,
the flow may be either laminar or turbulent.

1-1.2.2 The second step involves the study of different -

mathematical methods used to integrate these basic
differential equations. Practical general relationships, such
as the well-known Bernoulli equation, may thereby be
deduced. Solutions, valid for special cases, can also be
obtained by direct integration.

1-1.3 Relations between Fluid Particles:
Friction Forces

In a solid material, points in a system (on a disk, for
example) do not change their relative position (except for
elastic deformations which are described by well-defined
laws). On the other hand, fluid particles may be deformed
and each particle may have a particular motion which
differs quite markedly from the motion of other particles.
The forces exerted between fluid particles are the pressure
forces and the friction forces.

The friction force per unit area in a given direction, called
the shear stress t, is assumed to be either zero (“ideal”
or perfect fluid), or proportional to the coefficient of
viscosity u (viscous fluid). The shear stress t is @ scalar.
The set of shear stresses at a point constitutes a tensor.
The significance of this statement is developed in Chapter 5.
For now it is sufficient to know that the shearing stress,
at any point of a plane parallel to a unidirectional flow is

dv
T=ﬂa

where n is the perpendicular direction to the flow moving
" with velocity V.

Hydrodynamics is primarily concerned with a
“Newtonian fluid,” that is, its viscous stress tensor depends
linearly, isotropically, and covariantly (Chapter 5) on the
rate of strain or derivatives of the velocity components.
It does not deal with “plastic” fluids where the coefficient u
is réplaced by a function of the intensity or duration of the
shear. -

1-2 Streamline, Path, Streakline, and
Stream Tube

1-2.1 Notation

Consider the point A(x,y,z) in a Cartesian system of
coordinates. The axes OX, OY, OZ are mutually perpen-
pendicular (see Fig. 1-1). Consider an infinitely small
rectangular element of fluid with the point as a corner.
The edges of this element are dx, dy, dz. Its volume is
dx dy dz and its weight is @ dx dy dz or pg dx dy dz. @ is the
specific weight and g is the acceleration due to gravity.

The pressure at point A is a scalar quantity which is
completely specified by its magnitude. The pressure is
always exerted perpendicular to the considered <urface (see
Section 5-3.1). The corresponding force is a vector quantity,
which is specified by its magnitude and direction. The
magnitude of the pressure p is a function of the space
coordinates of 4 and time ¢; i.e., p = f(x,y,z,t). Its direction
is normal to the area on which the pressure is exerted. The

Figure 1-1 Notation in Cartesian coordinates.
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gradient of p (grad p or Vp), its derivative with respect to
space, is also a vector quantity. The components of grad p
along the three coordinate axes OX, OY, OZ, are given by
the derivative of p with respect to x, y, z, respectively; i.e.,
dp/dx, dp/dy, Op/oz.

The velocity of fluid particles at A4 is V. The components
of V along the three Cartesian coordinate axes 0X, 0Y, 0Z,
are u, v, and w, respectively. If j, j, k are unit vectors along
the axes OX, OY, OZ respectively, then: V = iu + ju + kw.
Since the system of reference is rectangular, the magnitude
of the velocity is given by V = [u? + v> + w?]'2. Vis a
scalarguantity and therefore completely defined by its
magnitude, like the pressure p. V is a vector quantity and is
specified by its direction and magnitude. Since V and its
components u, v, and w are functions of the space co-
ordinates of 4 and the time ¢, they can be written in the form
V(x,,z,1).

1-2.2 Definitions

1-2.2.1 The displacement dS of a fluid particle is defined
by the vector equation, dS = V dt, which is valid for both
magnitude and direction. This equation may be written
more specifically in terms of the displacements in each of
the three Cartesian coordinate directions as follows:

dx = u dt
dy=vdt
dz =wdt

1-2.2.2 A streamline is defined as a line which is tangential
at every point to the velocity vector at a given time t,.
A device for visualizing streamlines is to imagine a number
of small bright particles distributed at random in the fluid,
and then to photograph them with a short .exposure
(Fig. 1-2). Every particle photographs as a small line
segment. Each line which is drawn tangentially to these
small segments is a streamline.

At time t,, the equations dx = udt, dy = vdt, and
dz = w dt become:

dx  dy dz
u(X,y,Z,to) U(x,y,zJo) W(xy)’az,to)
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VELOCITY VECTORS _»

STREAMLINE

Figure 1-2  Streamlines observed by short-exposure
photography of various particles.

This is the mathematical definition of a streamline. These
equalities express the fact that the velocity is tangential to
the displacement of the particle at time ty. Figure 1-3
illustrates this fact in the case of a two-dimensional motion.
In this case dx/u = dy/v, which implies v dx — udy = 0.

Streamlines do not cross, except at point of theoretically
infinite velocity (see Figs. 11-6 and 11-7) and at stagnation
and separation points of a body where the velocity is zero.
Fixed solid boundaries and steady free surfaces are stream-
lines. Moving boundaries, such as propeller blades, and
unsteady free surfaces are not streamlines.

1-2.2.3 The path of a specific particle of the fluid is
defined by its position as a function of time. It may be

Figure 1-3  Definition of a streamline in a
two-dimensional motion.
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determined by photographing a bright particle with a
long exposure. The path line is tangential to the streamline
at a given time t,. However, the time has to be included
as a variable for defining a path. Hence, the path lines are
defined mathematically as

dx  dy  dz
u(x,p,zt)  oxpzt) wxyzt)

1-2.24 A streakline is given by an instantaneous shot
photographing a number of small bright particles in
suspension which were introduced into the fluid at the
same point at regular intervals of time (Fig. 1-4).

1-2.2.5 An elementary flow channel bounded by an
infinite number of streamlines crossing a closed curve
is known as a stream tube (Fig. 1-5).

1-2.3 Steady and Un.fteady Flow

1-2.3.1 For steady flows defined by time-independent
quantities, streamlines, streaklines, and particle paths
are identical. However, for unsteady or time-dependent
flows, these lines are different and a clear -understanding
of their generation is necessary to properly interpret the
results of a given experiment. For example, if dye is injected
at a given point of a fluid flow, the dye pattern will be a

Figure 1-4  Streakline obtained by instantancous
photography of various particles
coming from the same point.

STREAMLINES

VELOCITY
VECTORS

-Figure 1-5 Stream tube.

streakline; if the successive location of a neutrally buoyant
small ball are determined, a particle path can be traced;
finally, if a large number of shct threads are attached to a
body, the instantaneous direction of these threads will
yield a streamline pattern. All these methods are commonly
used in fluid flow experimental studies.

Streamlines, paths, streaklines, and stream tubes are
different in unsteady flow, that is, flow changing with
respect to time. Turbulent flow is always an unsteady flow;
however, it will be seen in that case that the mean motion
with respect to time of a turbulent flow may be considered
as steady. Then streamlines, paths, and streaklines of the
mean motion are the same (see Chapter 7). Figures 1-6 and
1-7 illustrate these definitions in some cases of unsteady
motion.

1-2.3.2 In some cases of unsteady flow (a body moving
at constant velocity in a still fluid, a steady wave profile
such as those due to a periodic wave or a solitary wave) it is
possible to transform an unsteady motion into a steady
motion relative to a coordinate system which moves with
the body or the wave velocity. The construction of a steady
pattern is then obtained by subtracting the velocity of the
body from the velocity of the fluid. This is the Galilean
transformation. Steady streamlines can then be defined
relative to a moving observer who travels with the body or
with the wave (see Fig. 1-8).
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WAVE TRAVEL

Figure 1-6

Periodic gravity wave in deep water.

1-3 Methods of Study

* The motion of a fluid can be studied either by the method
of Lagrange or the method of Euler.

1-3.1 Lagrangian Method

The Lagrangian method may be used to answer the
question: What occurs to a given particle of fluid as it
moves along its own path ? This method consists of following
the fluid particles during the course of time and giving the
paths, velocities, and pressures in terms of the original
position of the particles and the time elapsed since the
particles occupied their original position. In the case of a

Figure 1-7

Smoke in the wind.

STREAMLINES

"

compressible fluid, densities and temperatures are also
given in terms of the original position and the elapsed time.

If the initial position of a given particle at time ¢, is
X0, Yo» Zo, @ Lagrangian system of equatlons gives the
position x, y, z, at the instant ¢ as:

x = Fy(x0,Y0,205t — o)
Y = Fy(x0,Y0,Z0:t — to)
z = F3(X0,¥0520,t — to)

In practice this method is seldom used in hydrodynamics.
Lagrangian coordinates are, however, often used in theories
relative to periodical gravity waves. The velocity and

SMOKE

CHIMNEY
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Figure 1-8 (Top) Streamlines, paths, streaklines for a
steady flow around a fixed body.

(Middle) Streamlines, paths for an unsteady
flow around a body moving at constant
velocity in a still fluid.

(Bottom) Vectorial relationship between the
two kinds of motion : Galilean
transformation.

acceleration components at point (xg,y,2o) are then
obtained by a simple partial differentiation with respect
to time, such that .

_0Ox
4= at X0,Y0,20
v = ay
Iz x0.¥0,20
_ 0z
v — E X0,Y0,20

Similarly, the acceleration components are d2x/dt, 3%y/ot?,
0%z/o>.

1-3.2 Eulerian Method

The Eulerian method may be used to answer the
question: What occurs at a given point in a space occupied
by a fluid in motion? This is the most frequent form of
problem encountered in hydrodynamics. This method gives,
at a given point A(x,y,z), the velocity V(u,o,w) and the
pressure p (and, in the case of a compressible fluid, density
and témperature) as functions of time ¢. Since

V = F(x,y,z,t)

then
u = fi(x,y,z,t)
v = fo(x,y,z,t)
w = f3(x,y,2,t)
and

p = Fy(x,y,z,t)

The Eulerian system of equations is found by a total
differentiation of u, v, and w with respect to ¢t and by con-
sideration of the pressure components. In the following
example the Eulerian system of coordinates is used.



1-3.3 An Example of Flow Pattern

Let us consider an Eulerian system of coordinates where
the two-dimensional wave motion is represented by the
velocity components:

H
u= filxzt) = ‘;—): =5 ke™ cos (kt — mx)

w = fi(x,z,t) = E = ke™ sin (kt — mx)

a2

The equations for the streamlines are obtained from the
differential equation

dx dz
u(x’z,to) B W(x,Z,to)

- Thus,
dx _ dz
k(H/2)e™ cos (kt, — mx)  —k(H/2)e™ sin (ktog — mx)

or

dz = —tan (kt, — mx) dx
If t, is taken as 0, this equation becomes:
dz = —tan (—mx) dx = tan mx dx
The integration of this equation gives
€™ cos mx = constant

By varying the value of the constant the streamlines form
the general pattern illustrated in Fig. 1-7.

The paths (or particle orbits) are defined by the differen-
tial equation:

dx. dz
u(x,z,t)  wix,zt)

dt

Chapter 1: Basic Concepts and Principles

where ¢ is a variable. If it can be assumed that x and z differ
little from some given values x, and z,, the differential
equation, to a first approximation becomes:

H
dx = k.—

3 e™*° cos (kt — mx,) dt

Hence,

H
X —x; = > €™ sin (kt — mx,)

(z — z;) is found by a similar procedure. It is
H
z—z;= 5 e™*°ocos (kt — mx,).

In order to eliminate t, square the equations for (x — x;)
and (z — z;) and add the results. This gives:

x=—xP+@Ez—-z)= [ge""{lz

This is the equation of a circle of radius (H/2)e™. It is seen
that the paths are circular and the radius tends to zero as
zo — — oo. It will be seen in the linear wave theory that, at a
first approximation, one has x; = x,, z; = z, (Section 16-1),
and x,, z, can be considered the location of the fluid particle
at rest.

1-4 Basic Equations
1-4.1 The Unknowns in Fluid Mechanics
Problems

In general, the density of a liquid is assumed constant so
that equations are needed only for velocity and pressure.
Hence, in the Eulerian system of coordinates, the motions
are completely known at a given point x, y, z if one is able
to express V and p as functions of space and time: V =
F(x,y,z,t) and p = F(x,y,z,t). Therefore, to solve problems
in hydrodynamics two equations are necessary, one of them

9
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being vectorial. If V is expressed by its components u, v,

"and w, four scalar or ordinary equations are necessary.

In free surface flow problems, the free surface elevation
n(x,y,z,t) around the still water level, or the water depth
h(x,y,z,t), is unknown and a kinematic condition is also

required. However, in that case the pressure p is known and.

in general is equal to the atmospheric pressure.

For gases, two more unknowns need to be considered,
namely, the density p and the absolute temperature T.
Hence, to solve problems in the most general cases of fluid
mechanics, four equations are necessary. If V is expressed
by u, v, and w, then six ordinary equations are needed.

In hydrodynamics, basic equations are given by the
physical principles of. continuity and conservation of
momentum. The equation of state and the principle of the
conservation of energy must be added in the case of com-
pressible fluid. ‘

The reduction of a problem to such a small number of
variables (2 in hydrodynamics and 4 in gas dynamics), does
not occur for trivial reasons, but as a result of several
important arguments and assumptions. A number of
phenomenological functions are assumed to be known. For
example, it is assumed that the fluid is Newtonian and
either perfect or viscous, which defines the stress tensor.
The fluid obeys ‘Fourier’s law of conduction. Also, a
number of coefficients, such as heat conductivity, specific
heat, and viscosity, are supposed to be known functions
of the other unknown variables, such as density and/or
temperature. '

1-4.2 Principle of Continuity

The continuity principle expresses the conservation of
matter, i.e., fluid matter in a given space cannot be created
or destroyed. In the case of an incompressible homogeneous
fluid, the principle of continuity is expressed by the conserva-
tion of volume, except in the special casg of cavitation where
partial voids appear.

The continuity principle gives a relationship between
the velocity V, the density p, and the space coordinates
and time. If p is constant (in the case of an incompressible

fluid), it gives a relationship between the components of V
and the space coordinates, which are x, y, z. The equation
of continuity then becomes

ou v o _
ox dy 0z

as it is demonstrated in Section 3-2.

It will be seen that V may be found in some cases of flow
under pressure, independent of the absolute value for p, from
the principle of continuity alone, but p will always be a
function of V except at the free surface.

1-4.3 The Momentum Principle

The momentum principle expresses the relationship
between the applied forces F on a unit volume of matter of
density p and the inertia forces d(pV)/dt of this unit volume
of matter in motion. The inertia forces are due to the natural
tendency of bodies to resist any change in their motion.
It is Newton’s first law that “every body continues in its
state of rest or uniform motion via a straight line unless
it is compelled by an external force to change that state.”
The well-known Newtonian relationship is derived from

'his second law: “The rate of change of momentum is

proportional to the applied force and takes place in the
direction in which the force acts.” F = d(mV)/dt.

In fluid mechanics this equation takes particular forms
which take into account the fact that the fluid particle
may be deformed. These equations will be studied in detail.
For an incompressible fluid, the integration of the momen-
tum equation with respect to distance gives an equality
of work and energy, expressing a form of the conservation
of energy principle:

If V is expressed by u, v, w, then Newton’s second law
has to be expressed along the three coordinate axes. This
gives the three equations

F o du _dv _dw

= =P =P =P
where p is assumed constant.and F,, F,, F, are the com-
ponents of F along the three coordinate axes, respectively.



