/
L DONATIONR3585 "™

: MICR@OFTGD
z V'5U3§a5|c
for Ar?,bllcatlons

Alan | Rea

~ Technology

Graw

Hil Education

+Plus Series

Microsoft®
Visual Basic for
Applications

Alan | Rea

Haworth College of Business

Western Michigan University

% Technology
Education

Boston Burr Ridge, IL Dubuque, IA Madison, WI
Bangkok Bogotd Caracas
Milan Montreal New Delhi

New York San Francisco St. Louis
Kuala Lumpur Lisbon London Madrid Mexico City

Santiago Seoul Singapore Sydney Taipei Toronto

The McGraw-Hill Companies

Technology
Education

THE +PLUS SERIES: MICROSOFT® VISUAL BASIC FOR APPLICATIONS

Published by McGraw-Hill Technology Education, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY,
10020. Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in
any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc.,
including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.
This book is printed on acid-free paper.

1234567890QPD/QPD0987654

ISBN 0-07-283616-4

Editor-in-chief: Bob Woodbury

Publisher: Brandon Nordin

Senior sponsoring editor: Donald J. Hull
Editorial assistant: ~ Alaina Grayson

Manager, Marketing and Sales Paul Murphy
Project manager: Jim Labeots

Senior production supervisor: Rose Hepburn
Design coordinator: Cara David

Senior digital content specialist: ~Brian Nacik
Cover design: Cara David

Typeface: 10.5/12 Minion

Compositor: PreMediaOne

Printer: Quebecor World Dubuque Inc.

Library of Congress Cataloging-in-Publication Data

Rea, Alan I
Microsoft® Visual basic for applications 2003 / Alan Rea.
p.cm.

Includes index.

ISBN 0-07-283616—4 (alk. paper)

1. Microsoft® Visual Basic for applications. 2. BASIC (Computer program language) 3.
Microsoft® Windows (Compute file) I. Title.
QA76.73.B3R418 2005
005.26'8—dc22

2004053086

www.mhhe.com

3 1 To my wife, Lynda. Without you | couldn’t do any of this. Thanks for
dedlcathn listening to me ponder the merits of one programming structure over
the other at the kitchen table even though | might as well be speaking in
another language. | appreciate the smile and occasional nod.

Je 4 Plus Serie

Students will be able to discover and apply learned
skills while working through a variety of tasks. The
+Plus Series textbooks are designed for engaged, ac-
tive learning.

HOW WILL THE +PLUS
SERIES ACCOMPLISH THIS?
e Through relevant, real-world scenarios and cases

¢ Through tasks in each chapter that incorporate
steps and tips for easy reference

e By providing alternate ways and styles encouraging
student involvement

® Through the end-of-chapter reinforcement projects
that support what the student has learned

TO DATE +PLUS SERIES
TITLES INCLUDE:

® Microsoft® FrontPage 2003 by Ann Willer
® Microsoft® Outlook 2003 by Brenda Nielsen

e Microsoft® Visual Basic for Applications (VBA) by
Alan I Rea

e What’s New in Microsoft® Office 2003 by Don
Amoroso, Cheryl Manning, and Catherine Manning
Swinson

Vi

ADDI'OACH

+PLUS SERIES GOALS AND
APPROACH TO LEARNING

The +Plus Series textbooks emphasize that students
learn by being actively involved—by doing. Teaching
how to accomplish tasks is not enough for thorough
conceptual understanding. Students need to under-
stand and be able to complete the presented tasks in
order to master skills. The +Plus Series books are sub-
divided into sessions that contain groups of tasks and
hands-on practice. The session tasks contain concept
explanations combined with practice steps to apply
the presented material.

Visual Basic for Applications empowers Microsoft
Office users to develop their own customized applica-
tions to solve problems. At the beginning of each
chapter, the text presents students with a Chapter Case
that involves solving a business problem by developing
a VBA macro. Whether students create a prototype for
an e-commerce application or an automated report
generator, they apply the programming concepts pre-
sented in the chapter through a series of guided tasks
to create a working VBA enhanced Microsoft Office
application.

As students work through the text they’re exposed
to programming structures and logic, as well as, VBA
syntax. However, students always practice each pro-
gramming concept before moving forward. It’s not
enough to know what programming controls struc-
tures are. Students must also know how and when to
use one to solve a problem.

Students check their understanding through a
Task Reference. Task References are interspersed at
key learning points throughout the chapter. The Task
Reference guides students through programming
steps that build on each other as students create an ap-
plication or practice a concept. At the end of each
chapter, students can review each Task Reference to
make sure they understand what they’ve applied.

Students also learn that there’s more than one way
to apply VBA to a problem. Throughout the chapters,
Another Way illustrates a different method or short-
cut to apply VBA. Another Word illustrates how pro-
grammers use different terms and approaches to the
same problem.

Students can also test their comprehension after
each section of a chapter with short fill-in-the-blank
sentences in Making the Grade. These section check-
points enable students to judge whether they compre-
hend the major concepts in each section before mov-
ing forward.

At the end of each chapter, the text presents stu-
dents with three levels of concepts and programming
exercises to reinforce what they’ve learned in the
chapter.

Level One: Task Reference Roundup reviews the
tasks students completed in the chapter. It lists chapter
page numbers for reference as well as the major steps
used to complete each task.

Level Two: Review of Concepts allows students to
test their comprehension of key concepts in each chap-
ter as well as apply the knowledge to different scenar-
ios. Level Two consists of Fill-In, Review Questions,
and a Create the Question exercise that asks students
to provide the correct question when given an answer.

Level Three: Hands-On Projects builds on the
knowledge and skills students have acquired in the
chapter. Each Level Three consists of a set of program-
ming exercises that allow students to practice and ex-
pand their programming knowledge and skills. Level
Three consists of three levels of programming exer-
cises: Practice, Challenge!, and a Running Project.

In the Practice section, students follow a set of
steps to apply VBA skills learned in the chapter. These
exercises show students how they can use the same
techniques on different problems.

In the Challenge! Section, students must apply
newly-acquired programming knowledge and VBA
skills to a problem. The problems encourage students
to implement what they have recently learned. While
students solutions will vary, the exercises provide hints
and final application screens to help students as they
develop their application.

In the Running Project, students take on the role
of an Information Technology staff person in a small
business, La Llama Cycle. Students join the owner,
Jesus Rodriguez, as he starts his customized motorcy-
cle shop. They help him and the staff improve business
processes using customized VBA solutions.

vii

Alan I Rea is an associate professor of Computer
Information Systems at Western Michigan University’s
Haworth College of Business. Alan holds a BA from
The Pennsylvania State University, an MA from
Youngstown State University, and a PhD from Bowling
Green State University.

Alan teaches courses in various programming lan-
guages, Web and e-commerce application develop-
ment, and system administration. He has published in
various journals, including the Journal of Information
Systems Education, the Journal of Computer Information

viii

Systems, and the Mid-American Journal of Business. He
regularly serves as a reviewer for conferences, such as
the Americas Conference on Information Systems.
Alan is a member of various professional committees
concerned with teaching technology.

When not teaching or writing, Alan spends time
playing the tuba, computer gaming, or hanging out
with his family. Alan lives in Kalamazoo, Michigan,
with his wife, Lynda, son, Aidan, two cats, and various
forms of wildlife that include a growing roost of
neighborhood turkey vultures.

Each book project is a different experience for me.
While I’ve only been writing textbooks for about five
years, I'm still amazed at the intensity of the process
and the euphoria that comes with producing a high-
quality product I know will make a difference in the
classroom.

Don’t think that a textbook such as this one is a
solo effort. Without the professionalism and hard
work on the project team, my words would never ap-
pear anywhere but on my computer screen and a few
discarded print outs. I can’t thank everyone in the
process, but please take the time to look over the team
list in this preface. Each and every one of these people
make it their job to produce a quality product (and
make me look good in the process).

I’d like especially to thank Don Hull, my senior
sponsoring editor. Although Don came into the
process after we started the text, it was his wonderful

rapport and calm demeanor that kept me on track.
(The occasional e-mail and phone call helped as well.)

Of course, thanks go out to my colleagues and the
administration at Western Michigan University.
They’ve created an environment that encourages a
student-centered approach to teaching which allows
me to embark on adventures such as writing this text-
book.

I’d also like to give my greatest thanks to my wife,
Lynda. She has been my supporter, critic, and frontline
editor. Her contributions to this textbook are too nu-
merous to list. Without her, I never would’ve made it
this far.

Finally, I want to thank my son, Aidan. Although
he’s new to the world he brings much joy to my life.
He’s also the person who keeps me rooted in reality
with the occasional tap at the door asking “Dada” to
come out and play.

VBA AND YOU: HOW
CAN YOU GET THE MOST
OUT OF MICROSOFT

1 CHAPTER 1

OFFICE? 1.1
CHAPTER CASE
DAGGITT DEVELOPMENT 1.2
SESSION 1.1
INTRODUCTIONTO VBA PROGRAMMING 1.3
Where Did VBA Come From? 1.3
The Birth of VBA 1.5
General Programming Concepts 15
VBA's Role in Microsoft Office 1.7

SESSION 1.2
USINGTHE VBA INTEGRATED DEVELOPMENT

ENVIRONMENT (IDE) 1.8
Securing Microsoft Office 1.8
Opening the VBA IDE 1.10
Touring the VBA IDE 1.1
Project Explorer 112
Properties Window 1.14
Code Window 1.17
Customizing the VBA IDE Windows 1.18
Exploring the Excel VBA IDE 1.20
Comparing VBA IDEs 1.21

SESSION 1.3
RECORDING AND MANIPULATING MACROS 1.23

Recording Macros 1.23
Recording the Macro 1.24
Running a VBA Macro 1.26
Manipulating Macros 1.28
Changing the Code 1.29
Assigning Macros 1.31
Printing Macros 1.33
SESSION 1.4

SUMMARY 1.35
LEVEL ONE:

TASK REFERENCE ROUNDUP 1.37
LEVELTWO:

REVIEW OF CONCEPTS 1.38
LEVEL THREE:

HANDS-ON PROJECTS 1.39
Practice 1.39
Challenge! 1.41

RUNNING PROJECT 1.43

L b contents

OBJECTS, VARIABLES,
AND FUNCTIONS: HOW
DO YOU ACCESS AND
USE INFORMATION IN
VBA?

CHAPTER CASE
NORTH AVENUE RACQUETBALL
FOUNDATION

SESSION 2.1

UNDERSTANDING AND IMPLEMENTING
OBJECTS

Understanding the Object Model

Using the Object Browser

Understanding Objects

Accessing and Using Objects

SESSION 2.2
UNDERSTANDING VARIABLES
Storing Data

Creating Variables

Assigning DataTypes

Naming Variables

Managing Variables

Using an Object Variable

SESSION 2.3

USING VARIABLES AND FUNCTIONS
Using String Variables

Using the InputBox Function

Using Date andTime Variables

Using Number Variables

SESSION 2.4
SUMMARY

LEVEL ONE:

TASK REFERENCE ROUNDUP
LEVELTWO:

REVIEW OF CONCEPTS
LEVEL THREE:
HANDS-ON PROJECTS
Practice

Challenge!

RUNNING PROJECT

2 CHAPTER 2

2.1

2.2

2.5
2.5
2.10
2.13
2.14

2.19
2.19
2.19
2,21
2.23
2.23
2.26

2.29
2.29
2.31
2.34
2.37

2.42
2.43
2.44
2.45
2.45

2.48
2.50

CHAPTER 3

8 CONTROL STRUCTURES:
HOW CAN YOU MAKE
DECISIONS IN VBA? 3.1

CHAPTER CASE
TRI-CECTICKET RESERVATION SYSTEM

(TRICECTRS) 3:2
SESSION 3.1
CONTROL STRUCTURE OVERVIEW 35
Sequence Control Structure 3.5
Selection Control Structure 35
Repetition Control Structure 3.7
SESSION 3.2
IFTHEN ELSE STATEMENTS 3.8
Comparison Operators 3.9
Logical Operators 3.10
Implementing the IfThen Else Statement 3.10
Defensive Programming 3.17
Implementing Nested IfThen Else Statements 3.20
Implementing the MsgBox Function 3.21
SESSION 3.3
SELECT CASE STATEMENTS 3.26
Select Case Syntax 3.26
Implementing Select Case 3.27
SESSION 3.4
ITERATIONS AND LOOPS 3.30
Do Loops 3.30
Implementing a Do Loop 3.30
For Next Loops 3.34
Debugging Code during RunTime 3.38
SESSION 3.5
SUMMARY 3.41
LEVEL ONE:
TASK REFERENCE ROUNDUP 3.43
LEVELTWO:
REVIEW OF CONCEPTS 3.44
LEVEL THREE:
HANDS-ON PROJECTS 3.45
Practice 3.45
Challenge! 3.50
RUNNING PROJECT 3.52

CHAPTER 4

4 APPLICATION
DEVELOPMENT: HOW CAN

YOU CREATE YOUR OWN

MICROSOFT OFFICE

APPLICATION? 4.1
CHAPTER CASE
Newton Sales International 4.2
SESSION 4.1
COMMUNICATING WITH USERS 4.5
Dialogs Collection 4.5
Microsoft Office Assistant 4.9
SESSION 4.2
CUSTOMIZING YOUR APPLICATION 4.17

Creating a Customized Dialog Box with Forms 4.17
Customizing the Newton Sales Letter

Dialog Box 4.26
SESSION 4.3
INTEGRATING OFFICE APPLICATIONS 4.37
Introducing the Basic Automatic Steps 4.37
Creating the Newton Sales Integrated

Application 4.43
Debugging and Error Trapping 4.54
SESSION 4.4
SUMMARY 4.57
LEVEL ONE:
TASK REFERENCE ROUNDUP 4.59
LEVELTWO:
REVIEW OF CONCEPTS 4.60
LEVELTHREE:
HANDS-ON PROJECTS 4.61
Practice 4.61
Challenge! 4.66
RUNNING PROJECT 4.68

END OF BOOK
INDEX EOB 1.1

Xi

VBA and You:

How Can You Get the
\ Most Out of Microsoft
\ Office?

Chapter Objectives

e Learn VBA history

¢ Understand why to use VBA

¢ Understand programming concepts
e Use the Word VBA IDE

¢ Use the Excel VBA IDE

* Record macros

* Manipulate macros

* Implement macros

¢ Create programming solutions using VBA

chapter case

Daggitt Development

During her summer internship, Maggie, a junior at
the university, wants to learn more about using
computer applications in business. Luckily, she
gets an internship at Daggitt Development (DD for
short), a local consulting company that develops
software applications for small businesses. DD
provides customized software to businesses for
new payroll applications, electronic appointment
books, or any other type of office tool.

Cody, a senior programmer, tells Maggie that
DD’s most demanded service is the creation of
macro programs for businesses to use within
Microsoft Office. To do this, DD uses Visual Basic
for Applications, or VBA. Using VBA, DD can tailor
Microsoft Word, Excel, Access, PowerPoint, and
Outlook to meet a customer’s needs. Cody notes
that DD transforms aspects of horizontal software
into vertical software. Although Maggie is not sure
what this means, Cody assures her she will learn

soon enough.

Introduction

Because Maggie has experience with
Microsoft Office applications, Cody is ready to
start her on her first project. Maggie will develop a
customized macro in Microsoft Office for a local
business, Bob’s Baklava. This macro is similar to
the one DD uses to create the heading on its
Weekly Development Project Report (see Figure
1.1). Cody tells her not to worry that she hasn’t
used VBA before. He knows that she can learn
how to use VBA as she works on her project.

Maggie's first tasks are to learn about VBA and
programming concepts, become familiar with the
VBA Integrated Development Environment (IDE),
and learn how to record, edit, and run VBA
macros. This chapter will help both you and
Maggie become better prepared to customize ap-
plications and get the most out of Microsoft

Office.

Chapter 1 introduces you to VBA programming and why people use it to cus-
tomize applications. You’ll also learn some of the history behind VBA and how to
think and write like a programmer. We’ll spend time touring the VBA IDE so that
you are familiar with this programming environment. Finally, you’ll learn how to
record, manipulate, and implement VBA macros to customize Microsoft Word and

Excel.

VBA 1.2

& Daggitt. doc - Microsoft Word

| Ele Edt Vew Inset Format Tools Table Window
Dedy RV

e

Daggitt Development
Weekly Development Project Report

SESSION 1.1 INTRODUCTION TO VBA
PROGRAMMING

Like Maggie, you may think you don’t have the necessary programming knowledge
and skills to create customized Microsoft Office applications. However, many compa-
nies use VBA because it’s easy to learn and use, yet powerful enough to solve compli-
cated problems. VBA, or Visual Basic for Applications, is a programming language
that works within certain software applications. A programming language contains
specific rules and words that explain the logical steps to solve a problem. Although
VBA works within many software applications, it’s primarily used in Microsoft Office
applications: Access, Excel, Outlook, PowerPoint, and Word. VBA is the programming
language of choice for end user development of Microsoft Office applications. End
user development is when computer users (such as you) develop and maintain com-
puter applications with little or no help from technical specialists. However, you still
need some programming knowledge and skills to work with VBA. The more program-
ming knowledge and skills you have, the more you’ll be able to accomplish using VBA.

In this section we’ll explain where VBA came from, share some general characteris-
tics of programming languages, and finally explain why we need VBA in Microsoft Office.

Where Did VBA Come From?

Before VBA was a programming language called BASIC. BASIC stands for Beginner’s
All-purpose Symbolic Instruction Code. Two professors from Dartmouth College—
John Kemeny and Thomas Kurtz—created BASIC in 1964 so that students would have
a simple language to learn how to program computers. BASIC’s popularity grew and
before long (in 1969) an eighth grader named Bill Gates started using it. Of course,
this is the same Bill Gates who started a company called Micro-Soft with his friend
Paul Allen in 1975. You can only imagine what happened after that.

BASIC Evolution

During the 1970s, BASIC took on various forms as Gates and Allen applied—or
ported—it to many different computer systems, such as Altair, Apple, Commodore,
and Atari. A computer language is portable when it has the ability to work on a variety

FI1GURE:-1:]

Daggitt Development’s
Weekly Development
Project Report

CHAPTER
OUTLINE

1.1 Introduction to
VBA Programming
VBA 1.3

1.2 Using the VBA
Integrated
Development
Environment (IDE)
VBA 1.8

1.3 Recording and
Manipulating
Macros VBA 1.23

1.4 Summary VBA 1.35

VBA 1.3

VBA 1.4 CHAPTER 1 VBA 1.1 Introduction to VBA Programming

of computers. Microsoft next developed an operating system called MS-DOS for IBM’s
first personal computer. It included a programming language called GW-BASIC.
Microsoft was well on its way to becoming the powerful company it is today.

BASIC has many forms, but the most popular is probably Visual Basic. Visual
Basic or VB is a graphical event-driven programming language. An event-driven pro-
gramming language relies on actions and events to run. For example, an action or
event occurs when you click on an icon or type a word. Visual Basic relies on a graphi-
cal user interface, such as Windows. A graphical user interface, or GUI, is a graphic-
or icon-driven interface on which you point and click with your mouse to use
software. Figure 1.2 is a comparison of the GW-BASIC programming environment
with the VB integrated development environment (IDE). An integrated development

FIGURE 1.2

Comparison of GW-BASIC
and the VB IDE

\gwbasic. EXE

Penguin_Payroll - Microsoft Visual Basic [design] - [frmPayroll (Code)]
] Fle Edk View Proct Fomat Debug Run Query Disgram Tooks Add-Ins Window Help

P @B hEA o, s NESSRAX T &
HD®e
Banx

[iGeneray ’ | |@eciarations)

General |
h
A Bl
El

Penguin_Payroll (Penguin_
=24 Forms
[frmpayrol (frmPayroll.fi

oprion Explicic Used to make sure | declare all of my varisble:
5o oprion Explica 3 to mak it 11 af wy varish

waanles for the pr

Declare

Dim strEmployee Name
Dim sngHours_Work
Dim sngOvert im
Dim curPay_Rat
Dim curOvertime |
Dim curleekly Pay A

Aiphabetic | catsqorized |

¥ pay bel

Private Sub cmdProc

e from th

strEmployes Name = txcName.Text

Hake sure e

If sngHours_Worked > 80 Then
MegBox "V ork over 80 hours a week. " NewLine +
"Please ager or adjust your ho bExclamation, "Too many Hours'
txtHow

1h1Pay out = "

st R0 | Lo

www.mhhe.com/plusseries

environment, or IDE, is an application that provides programming tools to create,
debug, and manage software programs. Notice how many options are available to the
VB programmer as compared to the GW-BASIC programmer. More importantly,
which one would you rather look at? Remember, these languages have the same
source—BASIC—even though they’re different.

The Birth of VBA

Microsoft introduced Visual Basic in 1992. Programmers use VB to create software
programs. A programmer is a specialist who writes software to meet users’ needs. Also
in 1992, Microsoft released its first version of the popular Microsoft Office productiv-
ity suite. But it wasn’t until 1997, when Microsoft released Office 97, that Microsoft in-
cluded VBA in nearly all of the Office applications: Access, Excel, PowerPoint, and
Word. Finally, in Office 2000, Microsoft included VBA in Outlook. Microsoft Office
XP and Microsoft Office 2003 include even more VBA functionality.

What Is VBA?

When you program in Visual Basic, you're using a programming language to develop a

complete software program that will run by itself. For example, you might create a

game or accounting software. By contrast, when you use VBA, you're using a program-
ming language that will create customized solutions within a software application,
such as Microsoft Word. More specifically, VBA is a scripting language. A scripting
language is a programming language that works within another application to per-
form tasks.

Maybe you want to allow users to customize how their Word documents will
look. Or perhaps you want users to be able to track dinner reservations in an Excel
spreadsheet without having to know how to use Excel. Or maybe you want to send
formatted e-mail messages from a list of e-mail addresses in Access. With VBA, you
can do all of this.

Why Use VBA?

You know that most businesses use Microsoft Office because it meets many of their
everyday business needs. Business users need to type letters and memos (Microsoft
Word), manage budgets and figures (Microsoft Excel), send and receive e-mail
(Microsoft Outlook), and give presentations (Microsoft PowerPoint). Some business
users also need to keep track of inventories or other data (Microsoft Access). Microsoft
Office can meet all of these needs for the majority of users because it’s horizontal mar-
ket software. Horizontal market software is general business software that has appli-
cations in many industries.

Although Microsoft Office does meet most business needs, a business often re-
quires more specialized applications. One solution is to hire a consulting company to
write a new software program. But many times a business can use VBA instead simply
to customize Microsoft Office applications and solve the problem. VBA allows a busi-
ness to create vertical market software out of a Microsoft Office application. Vertical
market software is software that is unique to a particular industry. A business that
uses VBA to customize an existing Microsoft Office application such as Excel, instead
of hiring a consultant, saves a great deal of money.

General Programming Concepts

Now you know VBA’s history and why you should use it. You probably are eager to
learn how to use VBA effectively. But first you’ll need to understand some basic pro-
gramming concepts as well as how programmers solve business problems so you can
understand how to apply VBA to a business requirement.

VBA 1.5

VBA 1.6

FIGURE

1.3

Maggie's pseudocode.

CHAPTER 1 VBA 1.1 Introduction to VBA Programming

——— Thinking Like a Programmer

Stavt Progrom As a programmer, your first priority is to know
what a business needs. In this text, we’ll help you
pinpoint these needs. Figuring out a business
problem takes practice, and you first must learn
how to program to solve problems. Don’t worry,

Open Word

Sawve Word Document

e e A though; we include some exercises that allow you
Open New Document to tackle this step on your own.
Insevt Date Once programmers understand the problem—
Insert Spaces such as a company’s need for a payroll program to
Insert Repovt Heading

automatically print weekly paychecks—they map

Heke Hendiog Fold out the necessary steps to solve it. Programmers
Align Heading Center -
Wk St cde ex map out the problem in pseudocode. Pseudocode
Stop Macro Recorder uses English statements to create an outline of the
steps necessary for a piece of software to operate.
Stop Prograw Programmers call these steps an algorithm. An al-

gorithm is a set of specific steps that solve a prob-

lem or carry out a task. An algorithm is like a
dessert recipe, in that a recipe lists all the steps necessary to create a scrumptious
dessert. In programming, the sweet reward is a working piece of software.

You'll see examples of pseudocode throughout this text. We use it to describe each
programming problem we approach. Figure 1.3 is an example of pseudocode Maggie
wrote to help solve her first programming assignment in VBA. Notice that Maggie
didn’t type her pseudocode. Some programmers type pseudocode and some write it.
We'll put this pseudocode to work for us later in the chapter.

Programmers also use program flowcharts to plot out the algorithm. A program
flowchart is a graphical depiction of the detailed steps that a piece of software will
perform. We’ll use program flowcharts later in the text as we solve programming
problems.

Once programmers write their algorithm in pseudocode or a program flowchart,
they test it to make sure there are no logic errors. A logic error is a mistake in the way
an algorithm solves a problem. For example, a payroll program is supposed to calcu-
late overtime for anyone working more than 40 hours a week. If the program doesn’t
calculate overtime for someone working 50 hours a week, for example, it’s a logic
error.

Writing Like a Programmer

Now that you’re familiar with how programmers think, let’s look at how they write.
Programmers call the process of writing software coding. Coding is when you trans-
late your algorithm into a programming language. Coding looks different depending
on what type of programming language you’re using. This is because each program-
ming language has a specific syntax. Syntax is a set of rules to follow. We’ll focus only
on VBA syntax in this text. Figure 1.4 shows an example of VBA code.

Notice that some words appear in blue. These are reserved words. Reserved words
are words that a programming language has set aside for its own use. In Figure 1.4,
you'll notice Dim is colored blue. Dim is a reserved word VBA uses to create a variable.
We’ll discuss variables in detail in Chapter 2. Notice also that many lines start with a
single apostrophe and are a different color (green). Programmers call these explana-
tions comments. Comments tell other programmers what’s happening in software
code. The computer ignores comment lines when it runs code.

tipp= Although our figures are not in color; note these colors as you work in yourcode
throughout the book. .

www.mhhe.com/plusseries VBA 1.7

FIGURE 1.4
Notice how the VBA

4 Microsoft Visual Basic - payroll.xls - [Module1 (Code)]
‘M ple Edt Vew [nset Format Debug Run oo AddIns Window Hep C g
B o ey e SEYR @ . -

‘e 3 -
S : : - reserved words and
[General) _»| [emdPayroliButton =
0= - comments are colored.
Option Explicit ' Used to make sure I declare "
- &3 vBAProject (payroll.xls)
= 5 Microsoft Excel Objects Fublic Sub cmdPayrollButton()
Sheet1 (Payroll)
gThisWnrkbouk ! Declare variasbles for the program.
= 5§ Modules
=Y o=] Dim strEmployee Name As String ' Used to hold employee name ir
Dim sngHours_Worked As Single ' Used to hold the hours workec
Dim sngOvertime As Single ! Used to calculate overtime.
Dim curPay_Rate As Currency ' Used to hold the employees hc
s Dim curOvertime Pay As Currency ' Used to hold overtime calculs
Iibetier Dim curUeekly_P;y As Currency ! Used to hold the calculation
Modulel Module .! Dim shtPayroll As Worksheet ' Declare the worksheet as & vz

Aphabetic | Categorized |
e Module1

' Set the Worksheet wvariable.

Set shtPayroll = Application.Workbooks ("payroll.x1ls").Worksheets("Payr
shtPayroll.Range ("name") I
shtPayroll.Range ("hours") = ""
shtPayroll.Range ("payrate”) = "7
shtPayroll.Range ("pay”) .Value = ""

‘ Get input from the Employee using Input boxes.

strEmployee Name = InputBox("Please Enter Your Name"”, "Name")
sngHours_Worked = InputBox ("Please Enter Hours Worked”, "Hours Wor
curPay Rate = InputBox("Please Enter Pay Rate"”, "Pay Rate”)

:llid | Y.

Working Like a Programmer

You'll spend most of this text learning how to code in VBA, so we’ll save the discussion
of how to code until later. After programmers have coded a program, they spend some
time debugging their code. Debugging is the process of finding errors in software
code. Bugs are a common name for software errors. When you debug your code, you
look for syntax and run-time errors.

Syntax errors are mistakes in a software code’s grammar. Just as misspelling a
word is a mistake when writing, misspelling a word or forgetting to mark a comment
correctly will cause a syntax error. If you're supposed to use a semicolon (;) but you
use a colon (:) instead, you've made a syntax error. Run-time errors are mistakes that
occur when you run the software code. Software not displaying a window correctly is a
run-time error.

VBA'’s Role in Microsoft Office

You are an experienced Microsoft Office user. Using Office applications to solve busi-
ness problems comes easily to you. Why then do you need VBA to help you with
Microsoft Office? The answer is simple: you can do more in a shorter period of time.

We've discussed how VBA can make a horizontal market application into a verti-
cal market application. In the next session, we’ll show you how you can tailor your
Office applications using the macro recorder. A macro is a scripting language program
that performs a task or a series of tasks. However, using VBA you can go beyond
macros and create VBA programs that add functionality and features to Office appli-
cations. In this text you’ll learn how to create these VBA programs.

Ultimately with Microsoft Office and VBA you can achieve the following:

® Use the existing power of Microsoft Office When you begin with an already
powerful suite of software applications, you have a distinct advantage over pro-
grammers who must program every part of their software application.

® Add features and functionality to applications quickly Using VBA you can
customize an existing application or create a new application by combining ex-
isting Office applications. For example, you can create “Employee of the
Month” certificates in Word using data stored in Excel.

