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Preface

PROGRESS in the field of chemical kinetics has been considerable in the
twenty-five years that have passéd since the publication of Experimental
Methods in Gas Reactions. The original book gave a virtually complete
coverage of the literature on experimental techniques for gas reactions.
The frequency with which it has been cited as a source book of tech-
niques, together with its unavailability, indicated that a new edition
could fill a real need for the expenmentahst It 'has been obvious to us
both that much of the original is still relevant, and that there is much
new material to be incorporated into a book of this kind.

In this new edition we have endeavoured not to dispense with any
material from the original edition which might be of use to the research
worker. It is possible that, in setting ourselves this aim, we have erred
on the side of leniency. In particular, we have retained details of many
of the older methods of gas analysis. This has been done not because
we are unaware of the usefulness of gas chromatography, but because
it seemed to us that these methods, which are rapidly becoming un-
familiar to the younger generation of experimentalists, might suggest
analytical techniques in fields where gas chromatography is difficult
to employ and alternative approaches to problems of rate deter-

mination.

" 'The publication rate in gas kinetics is now many times greater than
in 1938, and this has made the compilation of the new edition difficult,
since inclusion of detailed descriptions of every new or modified
relevant technique would have materially increased the size of the
volume. The plan has therefore been to keep the book reasonable in
size by eliminating matter that is now irrelevant and bringing in much
material, together with a greatly extended system of references to help
the reader locate the relevant papers.

The purpose of the book remains. It is to help the new experimenter
(and also the more experienced) not only by directing how he can set
about new experimental techniques but also by stlmulatmg him to
adopt, modify and develop the methods described in the book and
thereby contribute his quota to the sum total of knowledge in this field.
The techniques described have a much wider application than simply
to gas reactions. Almost every research laboratory makes use of vacuum

systems and the manipulative devices first developed for gas kinetic
v



vi PREFACE

studies. The hope is therefore that this revised edition will have a
wider field of usefulness than the original edition.

The authors welcome information on new techniques and on further
developments of those which we have included. It is our pleasant duty
to acknowledge the help and assistance of colleagues in the United
Kingdom, Europe and North America, who answered our queries, gave
us the benefit of their experience and pointed out details of some
techniques and of literature references of which we were unaware.
Our thanks are also due to the staff of Macmillan and Company for
their courteous co-operation and assistance.

H. W. M.
B.G.G.

December 1963
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I
Kinetic Theory of Gases

THE principal formulae, laws and data are summarised: for details of the
derivations standard texts!? should be consulted.

Molecular dimensions

Table 1.1 lists values for some molecular diameters as determined by a
variety of methods.

TABLE 1.1
Molecular diameters in A’

Molecule 1 I1 III v v VI
Helium 2-18 264 2-14 1-48
Neon 2-59 1-84
Argon 364 287 233 296
Krypton 416 314 254 334
Xenon 492 342 2778 400
Hydrogen 274 276 224 186 2-72  2+45, 2:93, 2-98
Nitrogen 375 315 2-55 2-40 3-39 0-44
Oxygen 3-61 291 236 234
Chlorine 5-55 331 2-68 3:29
Bromine 6-16 372 10-0
Todine 692 6-33 ‘
Carbon monoxide 377 455 369 5-29 202

Carbon dioxide 459 323 262

Nitric oxide 3-69 497
Water 432 289 2-34 2-26 1-00
Ammonia 442 172,174
Hydrogen chloride 4-50 318  2-58  2-74
Hydrogen bromide 3-03
Mercury 237 192
Methane 4-16 0-33 0-24, 029
Acetylene 4-80
Ethylene 496 6-63 5-10, 6-93
Ethane 5-30 0-41  0-33,0-65,0-77
Key: I Viscosity data8
II Volume correction in van der Waals’ equation?
III Volume correction in Wohl’s equation?
IV Molecular refraction!
V Physical quenching of Na (?P)#
VI Chemical quenching of Hg (3P1)?

A2
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2 EXPERIMENTAL METHODS IN GAS REACTIONS

Number of molecules

One mole of gas contains 6-0227 x 10 molecules. This number is
denoted by N and is usually referred to as Avogadro’s number, or in the
German literature as Loschmidt’s number.

On the assumption of ideal gas laws (no interaction between molecules
and negligible volume of the molecules), one mole of gas is contained
in 22,414 cm3 at 0°C and 760 mm Hg pressure. This quantity is the
mole-volume. Thus at 0°C one cubic centimetre of gas - contains
2:687 x 10! molecules at 760 mm Hg pressure and 3-536 x 106
molecules at I mm Hg. At the temperature 7 K and the pressure p mm
the number of molecules per cm3 is 9-652 X 1018 p/T.,

The molecular velocity

From elementary theory the speed of the molecules can be deduced in
the following way. Consider a mole of gas confined in a cubical box of
volume v and assume that each molecule has the same velocity # and
that one-third of the total is moving parallel to each one of the three
edges of the cube. One moleculg will traverse the box in one second
u/ /v times and hit each wall /2¢/p times. Since N/3 molecules travel
in each direction and at each impact the change of molecular momentum
is 2Mu/N, the total change of momentum is (M = molecular weight)

2Muy 1_\{ u M2 i
N u32\3/11_31‘/v O

and is equal to the force f exerted on any one of the walls. ‘The area of
the wall being ot, the pressure,

= fot =20 @

ot since v = RT (R = gas content) @)
M _RT @)

and u=V3RTIM (5)

This formula is valid also in the exact theory if we take into consideration
the velocity and direction distribution of the molecules. In that case u
denotes the root mean square velocity, being defined as

N.@2=u?4u?+4+ug®-+...u52 (6)



KINETIC THEORY OF GASES 3
w1, 4z, . .. uy denoting the velocities of each molecule. With R =
8-31436 x 107 erg/deg mol we have

u = 1-5793 x 104V/T]M cm/sec! (7

This velocity is sometimes referred to as the effective velocity. From
formula (5) we find, introducing the density p = M/v, u = V/3pJp, p
being expressed in dynfcm2. Besides this velocity we shall have to deal
with the average velocity and the most probable velocity.

Distribution of the velocities

The deduction of the law governing the distribution of the molecular
velocities is due to Maxwell.

If Ny molecules are present in a cm? the number of molecules with
the velocity between ¢ and ¢ 4 dc is

3 0'12!
M) T (24 ®)

aNo = No - (ZRT

The most probable velocity is given by %Vz—" =0 and is

« = V2RT[M = 1-2895 x 104/ T]M cm/sec-1 9)

The average velocity is

: ca'Nc ,,JZRT 8RT

1 4551 X 10%/ TIM cm/sec—l (10)

It will be recognised that the most probable velocity < average velocity
< root mean square velocity .

In chemical kinetics it is often necessary to know the number of
molecules, the velocity of which exceeds a certain value c. This number is

6/ My on
Ny = ch No ‘/(ZRT) [ ~ 3R g (11

and introducing

1:/ e e ‘ (12)



4 EXPERIMENTAL METHODS IN GAS REACTIONS

we can define an expression in terms of the Gaussian distribution
function and the error integral

% =1+ % (g)e—c'/«' ~ Erf(g) (13)
or % ~1— }Exf” (2) — Exf (f:) (14)

When (c/o) exceeds unity, and on integration by parts, equation (15) is
obtained

1—Erf(x)=;\';;( 2x2)+2\//®-z. (15)

When x > 5 this is represented to within 1 per cent by

1 — Erf(x) = \/" (16)

and thus in the range xo > 5 we can express equation (14) in the form
N2 . 1

m= e (0t m) ()

The error function
2 R
E = ’ —
tf (x) A e%dx

and tables of the error functions and its derivatives are available.10,11
For xg = 3, ‘}, use may be made of the following expansion with
sufficient accuracy

N _ 2 . 1 1 3

m‘—‘/ [ {x0+—2x—6 4x03+8—x-o§—...} (18)
A simplified expression is obtained by considering the translational
motion of the molecules in two dimensions instead of in three. Then
putting

Mej2 =E
dNe _ 1 _zir
N = Ry ¢ E (19)

This formula is for all practical purposes sufficiently accurate and gives
instead of (18)

N]_ ch

e[S [dpe=rroo



KINETIC THEORY OF GASES 5

The numerical values of the average velocities of different molecular
species are readily calculated from equation (10), or from & = 2-514/
VM km/sec at 25° C.

Collisions
Collisions between molecules (or atoms)

The number of collisions per unit volume and per unit time is
denoted by Z and termed the collision number. Let us consider two
different molecules 4 and B, then the total number of collisions of one
molecule 4 with those of type B per second (Z4s) is given by

ap = (87kT|p)loas’ne (21)

where o4p the collision diameter equals one-half the sum of the respec-
tive molecular diameters, u is the reduced mass, m4 and mg are the
masses of molecules 4 and B respectively
_ mampg
BT mat ms

and 74 and np are the number of molecules 4 and B per cm.? Z,5 is
about 101 collisions per molecule second at STP. The total number
of bimolecular collisions Z(4B) between unlike molecules of type 4
and B per cubic centimetre per second is given by

Z(AB) =mn4.Zsn (22)
or Z(A.B) = (81rkT/y.)*a,433nAnB (23)

For collisions between like molecules in a single gas, the collision
number Z(AA) is given by

Z(AA) = (4nkTIm4) oastne (24)

substituting the known numerical values in equations (21), (23) and
(24), we obtain

Zup = 4571 x 104, T (’i]fﬂt_) 4

Z(4B) = 4571 x 1047 (%) oasPnanp

and  Z(AA) = 3232 x 104 . (T/Ma)oasnad®

At STP Z(AA) is equal to 3-852 x 10g442/M! collisions per cm?
sec. The mean time between collisions is the reciprocal of Z g, and the
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mean free path (mean distance travelled between successive collisions)
is given by equations (25) and (26), for like and unlike molecules
respectively.

1

A= Ly (25)
1
"~ wmoap’ns (26)

These formulae are valid at high temperatures when there is no
attraction between the molecules. At lower temperatures the mean free
path is somewhat dependent on the temperature owing to an attraction
between the molecules. According to Sutherland,12

T
“C+T
where A, is the mean free path at very high temperatures and C a

constant. The values of C are listed in Tables 1.2 and 1.3.
The mean free path A is also calculated from the relation

A= 2331 x 10—20( pryz) em (28)
at STP this equals 839 X 10-2!/o? cm. P is the pressure in milli-
metres of mercury.

Collisions with a surface. To obtain the elementary derivation of the
number 7 of molecules striking a unit area per second we will again
assume that the molecules are all moving with the same velocity uni-
formly divided in three dimensions. An area of, say, 1 cm? will be hit
within a second by } of all those molecules which are contained in the
cylinder, of base 1 cm? and length ¢. The factor } enters, since only }
of the molecules move in a direction perpendicular to and towards the
area. Thus

A=2 27)

8RT

#=3Ne=4}N —3r (29)
If we allow for the distribution of the velocities and directions
p=iNe=N ZRL —3637 x IGNVTIM  (30)

The number of molecules per cc at a pressure of p mm Hg and tempera-
ture T° K is
N = 9652 x 1018 p/T
and therefore
# = 3:511 X 102p/+/MT mol/sec cm? (31)
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In hydrogen (M = 2) at p = 1 mm Hg and T = 298° K.
= 1-438 x 102! mol/sec cm?.

Triple collisions. The collision between three particles is called a triple
collision. The three particles can collide simultaneously, or the third
particle can collide with two others which are already in the state of
(double) collision. This latter case is considered in calculating the
number of triple collisions,13:14,15

Tolman14 defines a ternary collision as occurring when the rigid
spheres approach to within an arbitrary distance of each other. Then,
using the previous symbolism,

Z(ABC) = 8v/2 . nlo asPopc?VET ( ! 1

Vias LRV pBC
where 8 is of the order of 1 A.18
Alternatively, the frequency of ternary collisions may be derived
from the collisions of the molecular pair AB with all the C molecules.
On this basis, Moelwyn-Hughes!? gives the collision frequency

Z(ABC) = ;
nangne 4r(ra 4+ 18 + r¢)¥(ra + 78)° [Eﬂz (‘1— + . )] (33)

me  my -+ mp

) nangne (32)

where r is the appropriate molecular radius.
When A and B are the same this expression reduces to

RT(2 | 1\
Z(AAC) = ngncAn(2rs + 1P Qra) [7 (”_l; + m_c)] (34)
Obviously this collision frequency is a very sensitive function of the
molecular radius 74. The expressions for ternary collisions are valid to
within the order of magnitude, due to the uncertainty involved in defining
the collision.18
At 0°C and 760 mm Hg the ratio of the triple collisions to double
collisions is given by
Zs ., 25 1 ( o+ o2\2
7 =25 x 108 o (750 ) (35)
The exact values for the life time 7 and the effective diameter of the
double complexes o2 are not known exactly, but oz will be of the same

order of magnitude as o and 7 = % ~ 1012 gec-1. With these values

Zs... -3 -4
-Z—2_10 — 10
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Another approximation13:1® for the relative number of the triple
collisions is the ratio of the molecular diameter, o, to the mean free path,
A :

Zs

o
Z 2 (36)
Viscosity

Consider two horizontal and parallel plates at a distance x, one of
which (the upper) is moved with the velocity W. Then the force acting

on 1 cm? of the stationary plate is

ow

where 0W/[0X is the velocity gradient between the two plates and 7 is
the coefficient of viscosity of the gas. Since the force is equal to the
momentum transfetred in unit time, we obtain the following kinetic
expression for the coefficient of viscosity. In any arbitrary plane between
the two plates the molecules arrive from layers situated at a distance of
A above and below this plane. The difference in the additional velocities
(due to streaming) of the molecules in these two layers is 22 -a—av—:, and the
number of molecules passing per second through 1 cm? of the arbitrary
plane } N¢ (N = number of molecules per cc). Thus we have

| F=25 3 New (38)
or comparing this with (37)
n = §ANém = § ANEMIN (39)
. 1
or since A= NTOW;
N = 3% . 7—;‘5—;4—1\7 (40)

More rigorous calculations employing certain correction factors lead
to the following expression (41), for the coefficient of viscosity of a gas

at medium pressures,
mkT\t 1

The viscosity should therefore be independent of the concentration
and vary as the square root of the temperature. In practice, the validity
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of this formula is confined to a certain pressure region. Considerable
discrepancies appear at high pressures when the dimensions of the
molecules cannot be neglected compared with the mean free path, and
at low pressures when the mean free path is comparable with the dis-
tance of the decisive dimensions of the apparatus used for the measure-
ment of the viscosity. We shall deal with the behaviour of gases at low
pressures in a separate section. Also the temperature variation, which is
very different from that for liquids, where viscosity decreases as tempera-
ture increases, is not predicted accurately by formula (41). The power
for the temperature variation is certainly greater than one-half, and for
a variety of organic vapours it has been shown?2? that n varies linearly
with 7. It is to be expected?! that for non-polar gases n will vary linearly
with temperature over the range 7/7¢ = 0-4-0-9. The Sutherland
formula (27), which corrects for the variation of mean free path with
temperature applies also to molecular diameters. Applying this to
equation (41), the expression

@) e

is obtained, where o, is the molecular diameter at infinitely high tem-
peratures. This gives an expression for the ratio of the viscosity of a gas

at two temperatures
m_ (Ti)(Let C
772—(T2)(T1+C) (+3)

which gives a fair empirical fit for most gases over a range of about
100-200° C. Table 1.2 gives the viscosities of some gases and values for
the Sutherland constant, C.

A further semi-empirical equation due to Keyes?? correlates the
experimental data over a wider temperature range than the Sutherland.
equation. This relation is

. aoT3
= TF al0="

and details of the constants ag, a and a; are given in ref 23. Many other
equations for the temperature variation of viscosity have been proposed,
and a summary is given by Partington.?# The Sutherland constant, C, is
less than the critical temperature, T'¢, for most examples and empirical
relations such as T¢/C = 1-1222and C/T¢ = 0-982¢ have been proposed.
More detailed elaborations of the theoretical background of the viscosity
of gases are given by Chapman and Cowling,’ and Hu’schfelder Curtiss
and Bird.?s

(4
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