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Introduction

Motivation. This work grew out of our attempt to understand the analog
in algebraic geometry of the fundamental paper of Quillen on the cobordism
of differentiable manifolds [30]. In this paper, Quillen introduced the notion
of a (complex) oriented cohomology theory on the category of differentiable
manifolds, which basically means that the cohomology theory is endowed with
suitable Gysin morphisms, and in particular gives the cohomology theory the
additional structure of Chern classes for complex vector bundles. Quillen then
observed that the complex cobordism theory X — MU*(X) is the universal
such cohomology theory.

This new point of view allowed him to shed some new light on classical
computations in cobordism theory. He made more precise the computation
by Milnor and Novikov of the complex cobordism ring MU* as a polynomial
ring: it is in fact the Lazard ring I, the coefficient ring of the universal formal
group law defined and studied in [16]. The isomorphism

L= MU*

is obtained via the formal group law Fyy(u,v) on MU* defined as the ex-
pression of the Chern class ¢;(L ® M) of a tensor product of line bundles as
a power series in ¢;(L) and ¢;(M) by the formula

c1(L ® M) = Fyy(ei(L), c1(M)).

This result of Quillen is in fact a particular case of his main theorem
obtained in [30]: for any differentiable manifold X, the L-module MU*(X)
is generated by the elements of non-negative degrees. We observe that this is
highly non-trivial as the elements of L, in the cohomological setting, are of
negative degree!

Quillen’s notion of oriented cohomology extends formally to the category
Smy of smooth quasi-projective k-schemes, with k a fixed field, see section
1.1. Our main achievement here is to construct the universal oriented coho-
mology theory {2* on Smy, which we call algebraic cobordism, and to prove
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the exact analogs of Quillen’s theorems in this setting, at least over a field of
characteristic zero. The computation

L = 2*(Speck)

is done in section 4.3, and the theorem asserting that (2*(X) is generated by
elements of non-negative degrees is proved in section 4.4. Surprisingly, this
result can be precisely reformulated, in algebraic geometry, as the generalized
degree formula conjectured by Rost. We will give on the way other applications
and examples, explaining for instance the relationship between our 2* and
the Kp functor of Grothendieck or the Chow ring functor CH".

It is fascinating to see that in the introduction of his paper Quillen ac-
knowledges the influence of Grothendieck’s philosophy of motives on his work.
Here the pendulum swings back: our work is strongly influenced by Quillen’s
ideas, which we try to bring back to the “motivic” world. In some sense, this
book is the result of putting Quillen’s work [30] together with Grothendieck’s
work on the theory of Chern classes [11]. Indeed, if one relaxes the axiom from
the paper of Grothendieck that the first Chern class ¢; : Pic(X) — A'(X) is a
group homomorphism, then in the light of Quillen’s work, one has to discover
algebraic cobordism.

Overview. Most of the main results in this book were announced in [20, 21],
and appeared in detailed form in the preprint [18] by Levine and Morel and
the preprint [19] by Levine. This book is the result of putting these works
together!.

The reader should notice that we have made a change of convention on
degrees from [20, 21]; there our cohomology theories were assumed to be take
values in the category of graded commutative rings, and the push-forward
maps were assumed to increase the degree by 2 times the codimension. This
had the advantage of fitting well with the notation used in topology. But
as is clear from our constructions, we only deal with the even part, and for
notational simplicity we have divided the degrees by 2.

This book is organized as follows. In order to work in greater generality as
in [9], instead of dealing only with cohomology theories on smooth varieties, we
will construct {2* as an oriented Borel-Moore homology theory X — §2,(X)
on the category of a finite type k-schemes.

In chapter 1, we introduce the notion of an oriented cohomology theory
and state our main results. In chapter 2, we construct algebraic cobordism over
any field as the universal “oriented Borel-Moore L.-functor of geometric type”
on the category of finite type k-schemes. Our construction is not merely an
existence theorem, we define algebraic cobordism by giving explicit generators
and relations.

! The second author wishes to thank the first author very much for incorporating
his part, and for his work combining the two parts into a whole
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An oriented Borel-Moore L,-functor of geometric type has by definition
projective push-forward, smooth pull-back, external products and 1st Chern
class operators for line bundles, satisfying some natural axioms. However,
this structure is not sufficient for our purposes, as one needs in addition a
projective bundle formula and an extended homotopy property. In chapter 3
we establish our fundamental technical result: the localization theorem 1.2.8,
when k admits resolution of singularities. The rest of the chapter 3 deduces
from this theorem the projective bundle formula and extended homotopy in-
variance for algebraic cobordism.

Chapter 4 introduces the dual notions of oriented weak cohomology theo-
ries and oriented Borel-Moore weak homology theories. We develop the theory
of Chern classes for these theories, give some applications, and then prove all
the theorems announced in the introduction. One should note however that
theorems 1.2.2 and 1.2.6 are only proven here in the weaker form where one
replaces the notion of oriented cohomology theory by the notion of weak ori-
ented cohomology theory. However, the proofs of the other theorems such as
theorem 1.2.3, the various degree formulas and theorem 1.2.7 require only
those weak forms.

Chapters 5 and 6 of this work deal with pull-backs. The essential difference
between an oriented cohomology theory and an oriented weak cohomology the-
ory is that the latter have only pull-backs for smooth morphisms while the
former have pull-backs for any morphism between smooth k-schemes. It is
convenient to work with the dual notion of an oriented Borel-Moore homol-
ogy theory on the category of finite type k-schemes, which is introduced in
chapter 5. Our main task in this setting is to construct pull-back maps for any
local complete intersection morphism, which is done in chapter 6 (assuming
k admits resolution of singularities). We conclude in chapter 7 by finishing
the proofs of theorems 1.2.2 and 1.2.6, and extending many of our results
on the oriented cohomology of smooth schemes to the setting of Borel-Moore
homology of local complete intersection schemes.

Notations and conventions. We denote by Schg the category of separated
schemes of finite type over S and by Smg its full subcategory consisting of
schemes smooth and quasi-projective over S. For an S-scheme X, we shall
denote by wx : X — S the structural morphism. By a smooth morphism, we
will always mean a smooth and quasi-projective morphism. In particular, a
smooth S-scheme will always be assumed to be quasi-projective over S.

Throughout this paper, we let k be an arbitrary field, unless otherwise
stated. We will usually, but not always, take S = Spec k.

We denote by Ox the structure sheaf of a scheme X and by Ox, or simply
O when no confusion can arise, the trivial line bundle over X. Given a Cartier
divisor D C X we let Ox (D) denote the invertible sheaf determined by D
and Ox (D) the line bundle whose O x-module of sections is Ox (D). For a
vector bundle E — X, we write Ox(F) for the sheaf of (germs of) sections
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of E. In general, we will pass freely between vector bundles over X and the
corresponding locally free coherent sheaves of Ox modules.

For a locally free coherent sheaf £ on a scheme X, we let ¢ : P(£) —
X denote the projective bundle Proj, (Symp, (£)), and ¢*€ — O(1)¢ the
canonical quotient invertible sheaf. For a vector bundle £ — X, we write
P(E) for P(O(E)), and ¢*E — O(1)g for the canonical quotient line bundle.
For n > 0, O% will denote the trivial vector bundle of rank n over X, and we
write 7, for the line bundle O(l)o;ﬂ on P%.

For a an element of a commutative ring R, we write a for the R-valued
point (1 : a) of P} := ProjzR[Xp, X1], and oo for the point (0 : 1). Similarly,
we use the coordinate z := X;/Xj to identify P} \ co with AL. For a functor
F defined on a sub-category of Schy we will usually write F'(k) instead of
F(Speck).

Acknowledgments. We would like to thank all those who made com-
ments and suggestions on earlier versions of this text, especially Annette
Huber-Klawitter, Janos Kollar, Alexander Merkurjev, Alexander Nenashev,
Ivan Panin, Joél Riou and Jorg Wildeshaus. We would like to thank Jorg
Schiirmann for pointing out an error in our construction of Chern classes
in oriented weak homology, and for discussions which helped lead us to the
correct version. The sections on refined pull-back and the excess intersection
formula were added to our original two papers following suggestions of Rahul
Pandharipande. We also thank the participants in the Oberwolfach Arbeitsge-
meinschaft on Algebraic Cobordism for presenting the material contained here
in a seminar setting and giving it a critical run-through. Finally, we would like
to thank the referee for several useful suggestions and the staff at Springer,
especially Ute Motz, for their help in bringing this project to fruition.

Beside our obvious debt to Quillen, the reader will not fail to notice our
repeated reliance on the ideas in Fulton’s book [9]. In fact, one can view a
large portion of this book as a revision of [9], replacing cycles with “cobordism
cycles” and adding a liberal dash of Hironaka’s resolution of singularities.

Marc Levine: Much of what went in to this book came out of discussions
with Fabien Morel during my visit in the summer of 2000 to the Université
de Paris 7, with subsequent work taking place during a number of visits to
the Universitit Duisburg—Essen. I would like thank both universities for their
support and hospitality. Thanks are also due to Northeastern University for
encouraging and supporting my research. Finally, I am grateful for support
from the NSF via the grants DMS-987629, DMS-0140445 and DMS-0457195,
and the Humboldt Foundation through the Wolfgang Paul program.

Boston, Essen, Miinchen, Marc Levine
August, 2006 Fabien Morel
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1

Cobordism and oriented cohomology

In this chapter, we introduce the axiomatic framework of oriented cohomology
theories, and state our main results.

1.1 Oriented cohomology theories

Fix a base scheme S. For z € Z € Smg we denote by dimg(Z, z) the dimension
over S of the connected component of Z containing z

Let d € Z be an integer. A morphism f : Y — X in Smg has relative
dimension d if, for each y € Y, we have dimg(Y,y) — dimg(X, f(y)) = d. We
shall also say in that case that f has relative codimension —d.

For a fixed base-scheme S, V will usually denote a full subcategory of Schg
satisfying the following conditions

e

S and the empty scheme are in V.

2. If Y — X is a smooth quasi-projective morphism in Schg with X € V,
then Y € V.

3. If X and Y are in V, then so is the product X xgY.
4. f X and Y arein V,sois X [[Y.

(1.1)
In particular, V contains Smg. We call such a subcategory of Schg admissible.

Definition 1.1.1. Let f : X — Z, g: Y — Z be morphisms in an admissible
subcategory V of Schg. We say that f and g are transverse in V if

1. Tor{?(Oy,0x) = 0 for all ¢ > 0.
2. The fiber product X xz Y isin V.

If V = Smg we just say f and g are transverse; if V = Schg, we sometimes
say instead that f and g are Tor-independent.



2 1 Cobordism and oriented cohomology

We let R* denote the category of commutative, graded rings with unit. Ob-
serve that a commutative gra.ded ring is not necessarily graded commutative.
We say that a functor A* : Smg’ — R* is additive if A*() = 0 and for any
pair (X,Y) € Sm? the ca.nomca.l ring map A*(X IIY) — A*(X) x A*(Y) is
an isomorphism.

The following notion is directly taken from Quillen’s paper [30]:

Definition 1.1.2. Let V be an admissible subcategory of Schg. An oriented
cohomology theory on V s given by
(D1). An additive functor A* : V°P — R”.

(D2). For each projective morphism f : Y — X in V of relative codimension
d, a homomorphism of graded A*(X)-modules:

fo 2 A(Y) — A*HH(X) _
Ubserve that the ring homomorphism f* : A*(X) — A*(Y) gives A*(Y)
the structure of an A*(X)-module.
These satisfy
(A1). One has (Idx ). = Ids«(x) for any X € V. Moreover, given projective

morphisms f:Y —» X andg: Z — Y iV, with f of relative codimension
d and g of relative codimension e, one has

(fog)e = fuogu: A*(Z) — A™HHe(X).

(A2). Let f : X — Z, g : Y — Z be transverse morphisms in V, giving the
cartesian square

W——>X

Suppose that f is projective of relative dimension d (thus so is f'). Then
g fe=fig".
(PB). Let E — X be a rank n vector bundle over some X in V, O(1) — P(E)
the canonical quotient line bundle with zero section s : P(E) — O(1). Let
1 € A°(P(E)) denote the multiplicative unit element. Define € € A'(P(E))
by
€ 1= s"(s«(1)).

Then A*(P(E)) is a free A*(X)-module, with basis

Y

(EH). Let E — X be a vector bundle over some X inV, and letp:V — X
be an E-torsor. Then p* : A*(X) — A*(V) is an isomorphism.
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A morphism of oriented cohomology theories on V is a natural transformation
of functors V°P — R* which commutes with the maps f,.

The morphisms of the form f* are called pull-backs and the morphisms of
the form f, are called push-forwards. Axiom (PB) will be referred to as the
projective bundle formula and axiom (EH) as the extended homotopy property.

We now specialize to S = Speck, V = Smy, k a field. Given an oriented
cohomology theory A*, one may use Grothendieck’s method [11] to define
Chern classes ¢;(E) € A*(X) of a vector bundle E — X of rank n over X
as follows: Using the notations of the previous definition, axiom (PB) implies
that there exists unique elements c;(E) € A*(X), i € {0,...,n}, such that
c(E) =1 and

Y (-1 a(BE) e =0.

=0
One can check all the standard properties of Chern classes as in [11] using the
axioms listed above (see §4.1.7 for details). Moreover, these Chern classes are
characterized by the following properties:

1) For any line bundle L over X € Smy, ¢;(L) equals s*s,(1) € A'(X), where
s : X — L denotes the zero section.
2) For any morphism Y — X € Smy, and any vector bundle F over X, one

has for each 7 >0
ci(f*E) = f*(ci(E))-
3) Whitney product formula: if
0-E -E—-E"-0

is an exact sequence of vector bundles, then one has for each integer n > 0:

en(E) = Y ci(E') eni(E").
i=0
Sometime, to avoid confusion, we will write c¢/(E) for the Chern classes of E
computed in the oriented cohomology theory A*.

The fundamental insight of Quillen in [30], and the main difference with
Grothendieck’s axioms in [11], is that it is not true in general that one has
the formula

a(L® M) = ¢ (L) + a1 (M)
for line bundles L and M over the same base. In other words the map

¢; : Pie(X) — AY(X)
L ¢ (L),

is not assumed to be a group homomorphism, but is only a natural transforma-
tion of pointed sets. In fact, a classical remark due to Quillen [30, Proposition
2.7] describes the way ¢; is not additive as follows (see proposition 5.2.4 for a
proof of this lemma):



