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Mathematical Economics

Mathematics and mathematical economics are subjects foreign to many students. The
concepts covered in the average course are lost on many without the opportunity for inter-
active practice. Matlab and Mathematica® are software packages that enable students to see
mathematics come alive on their screens. Mathematical Economics serves as a guide to the
essential mathematics of economics and as an introduction to the powerful tools represented
by those software packages.

This textbook, designed for a single-semester course, begins with basic set theory, and
moves briskly through fundamental, exponential and logarithmic functions. Limits and
derivatives finish the preparation for economic applications, which are introduced in chapters
on univariate functions, matrix algebra, and the constrained and unconstrained optimization
of univariate and multivariate functions. The text finishes with chapters on integrals, the
mathematics of finance, complex numbers, and differential and differences equations.

Rich in targeted examples and explanations, Mathematical Economics offers the utility
of a handbook and the thorough treatment of a text. While the typical economics text is
written for two-semester applications, this text is focused on the essentials. Instructors and
students are given the concepts in conjunction with specific examples and their solutions.
Typical mathematical economics texts do not introduce software packages; Mathematical
Economics introduces two, Matlab and Mathematica. It is the pairing of specific textbook
treatments with interactive software that sets this text apart and allows it to be used in a vari-
ety of course formats and as a reference.

Arsen Melkumian is Assistant Professor of Economics at Western Illinois University.



Preface

This book is intended to cover most of the mathematics that would be typically used in
undergraduate and lower-level graduate economics courses. The background recommended
for readers would be college-level algebra and the knowledge normally acquired in courses
on the principles of economics. This book contains numerous examples, visually stimulating
graphs and representations. I want especially to point out the need to integrate mathematical
knowledge with functional software in today’s ever-evolving economic landscape. At the end
of many of the chapters I include examples utilizing Mathematica or Matlab. I chose Math-
ematica over other software packages because of its ability to combine highly sophisticated
functions with wonderful usability.

One of the aims of this book is to give aspiring economists the basic mathematical tools
they need to excel at all levels of their discipline. I expect the students to learn economic
theory in other courses using the mathematical and programming skills acquired in the pro-
cess of studying this text. The material starts out with basic set theory and runs the gamut
of mathematical economics, including univariate and multivariate optimization and some
mathematics of finance. Each section comes with its own carefully chosen examples, which
teach the material without overwhelming the reader with useless repetition. The logical
progression of topics covered should help the reader to master the material presented in
this book.

The answers to odd-numbered problems are included at the end of the book. The instruc-
tor’s manual, which includes answers to the even-numbered problems, is available for those
professors, lecturers, and teachers who choose to adopt this textbook.
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1 Introduction

The purpose of this chapter is to familiarize the reader with basic concepts in set theory and
introduce our notation. The first section introduces sets of natural, rational, irrational and
real numbers and provides several examples of relations. The following section considers
the polynomial functions frequently used by economists, linear, quadratic and cubic, and
demonstrates how to minimize a quadratic profit function (or any quadratic function for
that matter). The concepts introduced in this chapter will be used frequently, so a thorough
understanding of the chapter’s material is essential to the remainder of this book.

1.1 Basic set theory

The numbers that we use for counting, namely 1,2, 3,..., are called natural numbers.
Number 1 is the lowest natural number and there are infinitely many natural numbers.
A collection of natural numbers, such as 1, 7, 25 and 46, is referred to as a set.

In general, a set is a collection of objects. These objects may be natural numbers, coins,
movies, people and so on. The objects in a set are referred to as the elements of the set.
In some cases we can define a set by enumeration of the elements. For instance, natural
numbers 2, 7, 11 and 23 can form a set

S =12l 28]

In this case, we have defined our set S by enumeration of the elements. The set S is finite, as
it contains a finite number of elements. When a set is infinite or contains a lot of elements,
we are forced to define it by description. For example, the set

W = {x | x is a natural number greater than 5}

reads as follows: “W is the set of all natural numbers x, such that x is greater than five.” The
vertical bar in the description of W simply means “such that.” Set W is infinite, as there are
infinitely many natural numbers greater than five.

If the elements of a set can be counted using natural numbers 1,2, 3,4 and so on, then
the set is considered to be countable. In particular, set S as well as any other finite set is
countable. Infinite sets may be countable or uncountable. For example, set W is countable
since its elements can be counted using natural numbers: the first element of W is 6, the
second element of W is 7 and so on. The set of natural numbers, referred to as N and given by

N = {x | x is a natural number}

is also countable.
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Now, let us define the set of integers
Zi=d...,—3,=-2,~1,0,1,2,3,...}

Clearly, Z is an infinite set that is countable. The set of integers Z is also known as the set of
whole numbers. We shall write ZT or Z~ to refer to the set of positive or negative integers,
respectively.

EXAMPLE 1.1  Show that the set of all integers Z is countable.
Solution: The set of integers can be counted as follows: the first element of Z is 0, the

second element of Z is 1, the third element of Z is —1, the fourth element of Z is 2, the fifth
element of Z is —2 and so on. The set is countable.

Now, consider another set:
14 3 { SEY,
Q=1{~— |p and g are integers with no common divisors
q

This is called the set of rational numbers. Rational numbers are simply fractions in lowest
terms. It could be shown that the set of rational numbers is countable. The set of rational
numbers Q contains both the set of integers Z and the set of natural numbers N. Alternatively,
we can say that the set of integers Z is a subset of (Q and the set of natural numbers is a subset
of Q and write

ZcQ
and

NcQ

to indicate that fact. In general, if every element of set A is also an element of set B, we
write

ACB
to indicate that A is a subset of B. Further, set A is said to be a proper subset of set B if
ACB and A#B
Note that N and Z are proper subsets of Q. Also, the set
§=12 711234
is a proper subset of Q. In fact, since every element of A is also an element of A, we have
A A

In set theory, there is a unique set & that contains no elements. This set is called the empty
set and we can easily prove that the empty set is a subset of any set.
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EXAMPLE 1.2  Show that the empty set @ is a subset of an arbitrary set A.

Solution: The empty set contains no elements. Therefore we can say that if @ is an element
of the empty set, then a is also an element of set A and write

ifa €e @ thenaeA
The sign € reads as “belongs to” and
acA

reads as “‘a belongs to A” or “a is an element of A” or simply “a is in A.” We write
agA

to indicate that a does not belong to A. Integers and rational numbers can be represented on
a number line like the one shown in Figure 1.1.

Since there are lots of rational numbers, it would appear that rational numbers could cover
the number line. In other words, it would appear that every point on the real line could be
assigned to a rational number. The ancient Greeks found that not every number on the num-
ber line is rational. In fact, it could be shown that +/3 is not a rational number. Furthermore,
there are infinitely many numbers on the number line that are not rational.

Numbers on the number line that are not rational are called irrational. There are infinitely
many irrational numbers and the set of irrational numbers is not countable. Intuitively speak-
ing, the set of irrational numbers contains a lot more elements than the set of rational
numbers. The set of real numbers R consists of rational and irrational numbers and is
uncountable: there is no way to associate elements of R with the elements of N. In other
words, the set of real numbers R is the union of the set of rational numbers Q and the set of
irrational numbers. There is also a set of complex numbers, which contains all real numbers.
Complex numbers are introduced as pairs of real numbers. Complex numbers are defined in
Chapter 11 and most of this text deals with real numbers only. Unless otherwise specified,
from now on by a “number” we shall understand a real number.

By definition, the union of two sets A and B, denoted A U B, is the set of elements
contained in either A or B. Thus:

AUB={x|x€AorxeB}
For example, if A={2,3,7}and B={3,11, 12} then AUB ={2,3,7, 11, 12}.
The intersection of two sets A and B, denoted by A N B, is the set of elements contained

in both A and B. Thus:

ANB={x|x€Aandx € B}

b - N er I T TR

Figure 1.1
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For example, if A={2,3,7} and B={3, 11, 12}, then AN B = {3}. Sets A and B have one
element in common. If two sets have no elements in common (A N B = &), they are called
disjoint.
The difference of two sets A and B, denoted by A — B, is the set of elements that belong

to A but not to B. Thus:

A—B={x|x€Aandx¢ B}
For example, if A ={1,2,3,4} and B ={4, 5, 7}, then A — B is equal to

A—B={1,23}

When considering a collection of sets, say A ={2,3,7} and B = {3, 11, 12}, it is useful
to think of each set in the collection as a subset of some set U called the universal set. The
choice of U depends only on the particular problem at hand. Let us say

U={l;2.3:4, 5.6;7.8:9 101112}
then with A and B as before, we have

U="A={145,6,89,10,'1%,12}
and

U—B={1,2,4/5,6,7,8,9,10}

The set (U — A) is called the complement of A (in U) and the set (U — B) is called the
complement of B (in U). There are many ways to denote the complement of A. We will use
A to denote the complement of A.

The power set of a set A is defined as the set of all subsets of A and is denoted as P(A).

EXAMPLE 1.3 Find the power set of A ={1, 2}.

Solution: The power set of A is P(A) ={@, {1}, {2}, {1, 2}}.

1.1.1 Venn diagrams

Unions, intersections and complements of sets can sometimes be visualized using so-called
Venn diagrams. In Figure 1.2, the points on and inside the circle form set A and the points
on and inside the oval form set B. The intersection of A and B consists of the shaded area.
The points in the shaded area belong to both A and B.

1.1.2 Cartesian product

The Cartesian product of two sets A and B, denoted by A x B, is the set of all possible
ordered pairs whose first component is a member of A and whose second component is a
member of B. Thus:

AxB={(x,y)|x€Aand y € B}
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Figure 1.2

For example, if A ={2,3} and B = {4, 5, 6}, then
Ax B={(2,4),(2,5),(2,6),(3,4),3,5),(3,6)}

EXAMPLE 1.4 Let A=B=R. Then A x B=R x R=RZ. The set R? is often referred
to as the real plane.

1.1.3 Relations

Let A and B be sets. A relation, R, from A to B is a subset of (A x B). Now, suppose x € A
and y € B. The notations xRy (x is in relation R to y) and (x, y) € R are equivalent. If
A = B, then a relation R from A to B is known as a relation on A.

EXAMPLE 1.5 Let A= B =R. Define arelation R from A to B as follows: xRy if x =y.
Then (x, y) € R implies that x = y.

1.1.4 Elementary types of relations on X
Let us consider a set X and a relation R on set X. A relation R on set X is said to be

(a) reflexive if x Rx,

(b) symmetric if xRy = yRx,

(c) transitive if (xRy and yRz) = xRz,
(d) complete if either x Ry or yRx,

forall x,y,ze X.
A relation on X may have any combination of these four properties, including none.

EXAMPLE 1.6 Consider the strict “less than” relation R; on a set of natural numbers N.
R, is not reflexive, since n < n is not true. The relation R; is not symmetric, since n < m
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does not imply m < n for n, m € N. However, R is transitive since n <m and m < w implies
n<w foralln,m, weN.

EXAMPLE 1.7 Let X =Y =R. The set of ordered pairs
{(x,y)eR?| y=3x}

is a relation on R, and its graphical counterpart is the set of points lying on the straight line
y=2=3x.

Observe that, given y; # y2, if (x1, y1) € R, then (x1, y2) ¢ R. For instance, if ordered pair
(2, 6) belongs to the relationship, no other ordered pair with 2 as the first element belongs to
the relationship.

A function f from a set A to a set B is a relation (from A to B) that assigns to each
element in A at most one element in B. In this case, we write f: A — B.

EXAMPLE 1.8 Consider a function f from the set of natural numbers N to the set of real
numbers R given by f(x) = ./x. Here f(4) =2 but f(4.5) is undefined, since 4.5 is not a
natural number.

Now, if f: A — B, the subset of A on which f is defined is called the domain of f; and
the subset of B in which f takes its values is called the range of f.

EXAMPLE 1.9  Consider a function f: R — R defined by f(x) =x2. Then, the domain of
f is all of R, written

Domain(f) =R
and the range of f is the set of all non-negative real numbers, written

Range(f) ={yeR|y >0}

1.1.5 Necessary and sufficient conditions

To better understand when certain mathematical methods can be used in applied situations,
it is important to remember that every method has its limitations. The conditions that must
be satisfied in order for us to use a certain formula are usually stated in a mathematical
statement known as a theorem. To read theorems properly, we will remind the reader about
the distinction between necessary and sufficient conditions.

Consider the statement: “It is necessary to graduate from a high school to enter a Ph.D.
program.” The statement means that, unless you have graduated from a high school, you can-
not enter a Ph.D. program. It is a necessary condition. However, it is by no means sufficient
to graduate from high school to be accepted into a Ph.D. program. The statement does not
say that, if you are a high-school graduate, then you can enter a Ph.D. program.

Now consider the statement: “If n is a natural number, then n is a real number.” The
statement is equivalent to saying the following: in order for a number to be real, it is
sufficient for it to be natural. By no means does it require the number to be natural: as
we know there are real numbers that are not natural. This is an example of a sufficient
condition.
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If from a logical statement p we can deduce a logical statement g, then we will express
this fact as p = g. We say “if p then g” or “q follows from p.” If in addition p follows
from g, then the statements p and g are logically equivalent and we write p <> g. The logical
equivalence statement <> means that p happens if and only if ¢ does. Quite often an abbre-
viation “if and only if” is used instead of saying “if and only if.” Sometimes the symbol <
is used.

Many times in the text we make statements valid for any object in a certain class, for
instance every real number. The symbol V is used as a short-cut for “for any.” For instance,

Vx>0

reads “for any x > 0.”

PROBLEMS FOR SECTION 1.1
1. Write the following in set notation.

(a) the set of all real numbers

(b) the set of all natural numbers

(c) the set of all non-negative integers

(d) the set of all real numbers greater than 76
(e) the set of all natural numbers less than 22
(f) the set that contains no elements

20Let A=11,2,3),B=43,4,7}), € ={3;4} and D ={T}!
(a) Determine which of the following statements are true.

(i) 5€eA
(ii) 7e B
(iii) DCB
@av) B.eD
(v) ACB

(b) Find the following sets.

(i) ANB
(i) AUB
(iii) A— B
(iv) B— A
(v) (ANB)— A
(vi) (BUA)— B
(vii) (AU B) — (CUD)
(viii) ANBNCND
(ix) ANCNDN®
@) ALUBY='C)—D

3. Describe the power set of each of the following.

(a) By ={a}
(b) By ={a,b}
(C) B3={1,2,3}
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(d) B4=1{5,7,9,11}
(e) Bs={{a,b},{a,c}, {b,c}}

4. Which of the following statements are valid?

(@) AUA=A
(b) AUZ=A
(c) AUU=A
d) ANA=A
() AND=U
6 ANU=U
(g) A=A

5. Provethat AC B and B C A imply that A= B.

6. A survey revealed that 80 students liked economics and 70 students liked finance. Further,
20 students liked both economics and finance, and 50 students liked neither. How many
students responded to the survey?

1.2 Functions from R to R

1.2.1 Polynomial functions
Most likely the simplest function that you will encounter is the constant function f(x) =a,
where a is a constant. For example, f(x) = 17.5 (or alternatively y = 17.5) is a constant
function. The value of the function y is always equal to 17.5 regardless of the value of x (see
Figure 1.3). In this case, we have Domain( f) =R and Range(f) ={17.5}.

A constant function is a special case of a polynomial function. The general form of a
polynomial function is

f&x)= Zaixi
i=0

y=17.5

Figure 1.3
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Fixing n =0, we have y =ay. Letting n =1, 2, 3, 4, in turn, we have

y=ap +a1_x linear

2

y=ap+a1x +axx quadratic

3

y=ap+aix +a2x2+a3x cubic

< quartic

y=ag-+aix + a2x2 + a3x3 +asx

Linear functions yield graphs that are straight lines, hence the name linear. Recall that the

equation of a linear function is given by y =ag + a;x, where aj is the intercept and a; is the
slope. Examples of linear functions include the following:

yi=2x+5
y2=-3x+7
3 =%

The functions above are represented graphically in Figure 1.4.

1.2.2 Zeros of quadratic functions

DEFINITION 1.1  The zeros of a function are the x-values where the graph of the func-
tion intersects the x-axis. Algebraically, zeros of function f(x) are numbers x; such that
fGe)=0.

A polynomial function of degree n has n zeros, provided multiple and complex zeros are
counted. The zeros of polynomial functions are also known as roots.

A quadratic function is given by the following equation:
y=ag+ax +axx?, where ay #0

Figure 1.5 depicts the simplest (ap =0, a; =0, a» = 1) quadratic function y = x2,

Figure 1.4



