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SOLID MECHANICS

This is a textbook for courses in departments of Mechanical, Civil and
Acronautical Engineering commonly called strength of materials or
mechanics of materials. The intent of this book is to provide a back-
ground in the mechanics of solids for students of mechanical engineering
while limiting the information on why materials behave as they do. It is
assumed that the students have already had courses covering materials
science and basic statics. Much of the material is drawn from another
book by the author, Mechanical Behavior of Materials. To make the text
suitable for Mechanical Engineers, the chapters on slip, dislocations,
twinning, residual stresses, and hardening mechanisms have been elimi-
nated and the treatments in other chapters about ductility, viscoelastic-
ity, creep, ceramics, and polymers have been simplified.

William Hosford is a Professor Emeritus of Materials Science at the Uni-
versity of Michigan. He is the author of numerous research and publi-
cations books, including Materials for Engineers; Metal Forming third
edition (with Robert M. Caddell); Materials Science: An Intermediate
Text; Reporting Results (with David C. Van Aken); Mechanics of Crys-
tals and Textured Polycrystals; Mechanical Metallurgy; and Wilderness
Canoe Tripping.



Preface

The intent of this book is to provide a background in the mechanics of solids
for students of mechanical engineering without confusing them with too much
detail on why materials behave as they do. The topics of this book are similar
to those in Deformation and Fracture of Solids by R. M. Caddell. Much of the
material is drawn from another book by the author, Mechanical Behavior of
Materials. To make the text suitable for Mechanical Engineers, the chapters
on slip, dislocations, twinning, residual stresses, and hardening mechanisms
have been eliminated and the treatments in other chapters about ductility, vis-
coelasticity, creep, ceramics, and polymers have been simplified. If there is
insufficient time or interest, the last two chapters, “Mechanical Working™ and
“Anisotropy.” may be omitted. It is assumed that the students have already
had courses covering materials science and basic statics.

I want to thank Professor Robert Caddell for the inspiration to write texts.
Discussions with Professor Jwo Pan about what to include were helpful.

Conversions

To convert from To Multiply by
inch, in. meter, m 0.0254
pound force, Iby  newton, N 0.3048
pounds/inch’ pascal, Pa 6.895 x 10°
kilopound/inch®  megapascal, MPa  6.895 x 10°
kilograms/mm®  pascals 9.807 x 10°
horsepower watts, W 7.457 x 107
horsepower ft-Ib/min 33 x 10°
foot-pound joule, J 1.356
calorie joule, J 4.187

Sl Prefixes

tera T 10" pico p 10-12
giga G 10” nano n 10-Y
mega M 10 micro  pu 10-°
kilo  k 103 milli  m 16—
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n Stress and Strain

Introduction

This book is concerned with the mechanical behavior of materials. The term
mechanical behavior refers to the response of materials to forces. Under load,
materials may either deform or break. The factors that govern a material’s
resistance to deforming are very different than those governing its resistance
to fracture. The word strength may refer either to the stress required to deform
a material or to the stress required to cause fracture; therefore, care must be
used with the term strength.

When a material deforms under a small stress, the deformation may be
elastic. In this case when the stress is removed, the material will revert to its
original shape. Most of the elastic deformation will recover immediately. How-
ever, there may be some time-dependent shape recovery. This time-dependent
elastic behavior is called anelasticity or viscoelasticity.

A larger stress may cause plastic deformation. After a material undergoes
plastic deformation, it will not revert to its original shape when the stress is
removed. Usually, a high resistance to deformation is desirable so that a part
will maintain its shape in service when stressed. On the other hand, it is desir-
able to have materials deform easily when forming them into useful parts by
rolling, extrusion. and so on. Plastic deformation usually occurs as soon as
the stress is applied. At high temperatures, however, time-dependent plastic
deformation called creep may occur.

Fracture is the breaking of a material into two or more pieces. If fracture
occurs before much plastic deformation occurs, we say the material is brittle.
In contrast, if there has been extensive plastic deformation preceding fracture,
the material is considered ductile. Fracture usually occurs as soon as a critical
fracture stress has been reached; however, repeated applications of a some-
what lower stress may cause fracture. This is called fatigue.

The amount of deformation that a material undergoes is described by
strain. The forces acting on a body are described by stress. Although the reader
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should already be familiar with these terms, they will be reviewed in this
chapter.

Stress

Stress, o, is defined as the intensity of force at a point,
o = dF/dA as 0A — 0. (1.1a)

If the state of stress is the same everywhere in a body,
o = F/A. (1.1b)

A normal stress (compressive or tensile) is one in which the force is normal to
the area on which it acts. With a shear stress, the force is parallel to the area
on which it acts.

Two subscripts are required to define a stress. The first subscript denotes
the normal to the plane on which the force acts, and the second subscript iden-
tifies the direction of the force.* For example, a tensile stress in the x-direction
is denoted by o,,, indicating that the force is in the x-direction and it acts on
a plane normal to x. For a shear stress, o,,, a force in the y-direction acts on a
plane normal to x.

Because stresses involve both forces and areas, they are tensor rather than
vector quantities. Nine components of stress are needed to describe fully a
state of stress at a point, as shown in Figure 1.1. The stress component o, =
F,/ A, describes the tensile stress in the y-direction. The stress component
0.y = I,/ A_is the shear stress caused by a shear force in the y direction acting
on a plane normal to z.

Repeated subscripts denote normal stresses (e.g. 0y, Oy, .. ), whereas
mixed subscripts denote shear stresses (e.g. 0y, 0. .... ) . In tensor notation,

* Use of the opposite convention should cause no confusion as o;; = 0/;.
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Figure 1.2. Stresses acting on an area, A’, under a normal force,
F,. The normal stress is oy = Fy /Ay = F,cos0/(A,/cosf) =
o, cos’f. The shear stress is 1y = F./Ay = F,sin0/(A,./
cosf) = o,, costsind.

the state of stress is expressed as

Oxx Oxy Oxz
Oij = |Oyx Oyy Oyz|. (1.2)

Ozx Ozy Oz

where 7 and j are iterated over x, y, and z. Except where tensor notation is
required, it is often simpler to use a single subscript for a normal stress and to
denote a shear stress by 7,

Oy = Oxx, and Ty = Oxy. (1.3)

A stress component, expressed along one set of axes, may be expressed
along another set of axes. Consider the case in Figure 1.2. The body is sub-
jected to a stress oy, = F,/A,. Itis possible to calculate the stress acting on a
plane whose normal, V', is at an angle 6 to y. The normal force acting on the
plane is F,, = F,cosf/ and the area normal to y" is A, /cos#, so

oy =0oyy = Fy/A, = (F cos0)/(Ay/cosf) = 6,c0576. (1.4a)

Similarly, the shear stress on this plane acting in the x’ direction, 7, (= oy,
is given by

Tyo =0yy = Fu/Ay = (Fysind)/(A,/cost) = o,cosfsing. (1.4b)

Note that the transformation equations involve the product of two cosine
and/or sine terms.

Sign Convention

When we write 0;; = F;/Aj. the term oj; is positive if i and j are either both
positive or both negative. On the other hand, the stress component is negative
for a combination of i and j in which one is positive and the other is negative.
For example. in Figure 1.3 the term o, is positive on both sides of the element
because both the force and normal to the area are negative on the left and
positive on the right. The stress 7, is negative because on the top surface y is
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Tyx <0
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Figure 1.3. The normal stress, o,,, is positive because the direction of the force F, and
the plane A, are either both positive (right) or both negative (left). The shear stress,
7,, and 7,,, are negative because the direction of the force and the normal to the plane
have opposite signs.

positive and the x-direction force is negative, and on the bottom surface the
x-direction force is positive and the normal to the area, y is negative. Similarly,
T, is negative.

Pairs of shear stress terms with reversed subscripts are always equal. A
moment balance requires that 7;; = 7;;. If they were not, the element would
rotate (Figure 1.4). For example, 7,, = t.,. Therefore, we can write in general
that My =1, = 1,, = 0,50

Oij = 0ji, or T; =71j;. (15)
This makes the stress tensor matrix symmetric about the diagonal.

Transformation of Axes

Frequently, it is useful to change the axis system on which a stress state is
expressed. For example, we may want to find the shear stress on a inclined
plane from the external stresses. Another example is finding the normal stress
across a glued joint in a tube subjected to tension and torsion. In general,
a stress state expressed along one set of orthogonal axes (e.g., m, n, and p)
may be expressed along a different set of orthogonal axes (e.g., i, j, and k).

Tyy
———
Tyx Figure 1.4. An infinitesimal element under shear stresses,
7., and 7,,. A moment balance about A requires that 7, = 7,,.
_—
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Figure 1.5. Two orthogonal coordinate systems, (x, y, z) and (X', y', 2').
The stress state may be expressed in terms of either.

The general form of the transformation is

3

3
Oij = Z Z eimejnanm- (16)

n=1 m=I
The term ¢, is the cosine of the angle between the i and m axes, and ¢, is

the cosine of the angle between the j and n axes. The summations are over the
three possible values of m and n, namely m, n, and p. This is often written as

gij = (ir71€j/1(7nu1 (17)

with the summation implied. The stresses in the (x, y, z) coordinate system in
Figure 1.5 may be transformed onto the (', y', z) coordinate system by

Ovy = byl cOyy + (.\‘"\'e.\".\'a_\‘.\' + K_\-':K_\-'_\-O':_\-
+ k.\",\'[,\"_\'g.t)' + (.\"_\‘t,\"_\'g_\'_\' + K.\":é.\"_\'o':_\' (183)
F by :0xz + Lyl 0y, + byl 04,
and
Oyy = CoxlyyOxy + (/\".\'(\"\'UV\',\' + e,\":(:‘\",\'o':,\'
+ (.\"\‘(_\' _\'0'.\'.\' + (I,\"_\'{_\".\'U_v_\' + ({.r':e_\"_\'o':_\' (lgb)
I (.\"\'(/v\' 20xz + (.\"_ve_\":a_v: + (.\":K_\"ZO'::-
These equations may be simplified with the notation in Equation 1.3 using

Equation 1.5,

2 ']
Oy = 5, 0x + 6_2\,,“,0". + l‘f,:oz

| . (1.9a)
2l 2‘1\")’6\":7_\': + 28y lx Ty + ze.v’.\'e.r’_\'r.\'_v
and

Tyz = e.\".\'(_v'.\'o.\'.\' + e.r'_\'e_\"_vo_v_\' + e_\-':({_\v:G;;
+ ((]ar’ye 1,\": + e.r’;ky‘y)rvz + (e.\”:ey'.\' + Z.\".re,v’z)fzx (1.9b)
+ (@_‘-Q‘-C\«v\. -+ (.\"_\'(_v’.\‘)T.\'V\w

Now reconsider the transformation in Figure 1.2. Using equations 1.9a and 19b
with o, as the only finite term on the (x, y, z) axis system,

oy = (i_\,o\‘_\. = o,cosf and Tyy = byyly oy, = oycosfsing  (1.10)

in agreement with Equations 1.4a and 1.4b.
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Principal Stresses

It is always possible to find a set of axes (1, 2, 3) along which the shear stress
components vanish. In this case the normal stresses, o1, 02, and o3, are called
principal stresses and the 1, 2, and 3 axes are the principal stress axes. The
magnitudes of the principal stresses, o, are the three roots of

o,—ho, — hop,— 5L =0, (1.11)
where
[1 — U\‘,\ + 0’“," + (T:_;_.
[: = 03: + 03\' + (T,\?\' - 0'_‘-‘\-(1\-_- - (7.':0\‘.\' - (7.\‘.\'0"\'7\‘ ( 1 . 1 2)
L = 04x0yy027 + 2070340%y — a_\_(a_‘z,: — 04,02, — n::g_s‘.
The first invariant is /, = —p/3, where p is the pressure. /. >, and /3 are inde-

pendent of the orientation of the axes and are therefore called stress invariants.
In terms of the principal stresses, the invariants are

I, =01 4+0+4 03
L= —02»033 — 033011 — 011022 (1.13)

I = 01102203;3.

EXAMPLE PROBLEM #1.1: Find the principal stresses in a body under the
stress state, o, = 10,0, =8.0. =5, 1, =1;, =5, 7,y = 1., = —4, and
T,y = Ty, = —8, where all stresses are in MPa.

Solution: Using Equation 1.13, I; = 10+8 —-5=13. L =5 +(—4)" +
(—8)> —=8(=5) = (-5)10—10.8 = 115, Is = 10.8(=5) +2.5(—4)(-8) — 10.5” —
8(—4)2 — (—5)(—8)? = —138 MPa.

Solving Equation 1.11, (7;; — ]3(7,2, — 1150, + 138 = 0,0, = 1.079, 18.72,
—6.82 MPa.

Mohr’s Stress Circles

In the special case where there are no shear stresses acting on one of the
reference planes (e.g., 7;, = 7., = 0), the normal to that plane. z, is a prin-
cipal stress direction and the other two principal stress directions lie in the
plane. This is illustrated in Figure 1.6. For these conditions, ¢,.=¢,.=
0. 7y =17, =0, by =y, =cos¢, and ¢, = —{, = sing. The variation of
the shear stress component 7./, can be found by substituting these conditions
into the stress transformation Equation (1.8b). Substituting ¢,/. = ¢,. = 0.

Tyy = COS@sing(—o,, + oyy) + (cosqu — sin? D)Tyy. (1.14a)
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z y Oy
J 1 Tyx
X"
y
~—> Gy X
5 7 Tyx Ox
o Txy y =Y Tyy
X
[

Figure 1.6. Stress state to which Mohr’s circle treatment applies. Two shear stresses,
7,- and 7., are zero.

Similar substitution into the expressions for o and o results in
0 = co8” o, + sin® pa, + 2cos g sin ¢, (1.14b)
and
oy = sin’ ¢o, + cos’ ¢$o, +2cos¢sin Ppry,. (1.14¢)

These can be simplified by substituting the trigonometric identities sin2¢ =
2sin¢ cos ¢ and cos2¢ = cos> ¢ — sin ¢,

Tvy = —[(0y — 0y)/2]sin2¢ + T,,cOS2¢ (1.15a)
oy = (0y+0y)/2+ [0y — 0y)/2]cos2¢1,,sin2¢ (1.15b)

and
oy = (0x +0y)/2 — [(0x — 0,)/2]cos2¢ + Tyysin2¢. (1.15¢)

Setting 7. = 0 in Equation 1.15a, ¢ becomes the angle, #, between the prin-
cipal stresses axes and the x and y axes (see Figure 1.7):
Ty =0 =sin20(o, —0,)/2 4+ cos26t,, or tan26 =t /[(o —0,)/2].
(1.16)

The principal stresses o1 and o, are the values of o and o for this value of
.

01> = (0, +0,)/2+ [0, —0,)/2]c0s20 + 1,,5in20 or

) . (1.17)
012 = (00 +0,)/2 £ (1/2)[ (04 — 0,)* +422,]"

A Mohr’s circle diagram is a graphical representation of Equations 1.16 and
1.17. It plots as a circle with a radius (o) — 02)/2 centered at

(01 +02)/2 = (or +0y)/2 (1.17a)

as shown in Figure 1.7. The normal stress components, o, are represented on
the ordinate and the shear stress components, 7, on the abscissa. Consider the



